MATH 115, SUMMER 2012
 LECTURE 16

JAMES MCIVOR

Today we mark the halfway point of the course by proving one of the most famous theorems in number theory:

Theorem 1 (Quadratic Reciprocity Law). Let p, q be distinct odd primes. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Other ways to say it:

$$
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

- or also:

Look at the two congruences:

$$
x^{2} \equiv p \quad \bmod q \quad \text { and } \quad x^{2} \equiv q \quad \bmod p
$$

If either or both of p and q are congruent to $1 \bmod 4$, then either both congruences have a solution, or both don't. If $p, q \equiv 3 \bmod 4$, then one has a solution and the other does not.

- loosely, if either prime is $1 \bmod 4$, they behave the same; if both are $3 \bmod 4$, they behave differently

1. How to use it

- tricks we've learned so far don't help us to deal with the Legendre symbol $\left(\frac{a}{p}\right)$ when p is large.
- QRL lets us "flip it".

Examples 1.1.

$$
\begin{equation*}
\left(\frac{7}{23}\right)=(-1)^{3 \cdot 11}\left(\frac{23}{7}\right)=-\left(\frac{2}{7}\right)=-1 \tag{1}
\end{equation*}
$$

(using yesterday's results at the last step)
$\left(\frac{19}{101}\right)=(-1)^{9 \cdot 50}\left(\frac{101}{19}\right)=\left(\frac{6}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{3}{19}\right)=(-1)(-1)^{1 \cdot 9}\left(\frac{19}{3}\right)=\left(\frac{1}{3}\right)=1$
(3) Determine whether the congruence $x^{2} \equiv 103 \bmod 257$ has a solution.
(4) $\left(\frac{54}{17}\right)$
(5) $\left(\frac{-24}{31}\right)$

2. How to prove it

We'll give a mildly geometric/combinatorial proof, using Gauss' Lemma, which differs from the proof in the textbook.

Proof. Set

$$
S=\left\{1,2, \ldots, \frac{p-1}{2}\right\}, \quad T=\left\{1,2, \ldots, \frac{q-1}{2}\right\}
$$

- let $m=$ number of $s \in S$ such that $q s \notin S$.
- let $n=$ number of $t \in T$ such that $p t \not n n T$.
- by Gauss' Lemma, we have

$$
\left(\frac{p}{q}\right)=(-1)^{n}, \quad\left(\frac{q}{p}\right)=(-1)^{m}
$$

In \mathbb{R}^{2}, look at the subset

$$
S \times T=\{(s, t) \mid s \in S, t \in T\}
$$

We call a point in \mathbb{R}^{2} whose coordinates are both integers a lattice point (LP); sometimes I'll call them dots.
*** The idea of the proof is to count dots in various regions of $S \times T$. Look at the picture to follow the argument. ${ }^{* * *}$

- inside $S \times T$, draw the following four parallel lines:

$$
\begin{align*}
p t-q s & =\frac{p-1}{2} \tag{1}\\
p t-q s & =1 \tag{2}\\
p t-q s & =-1 \tag{3}\\
p t-q s & =-\frac{q-1}{2} \tag{4}
\end{align*}
$$

- let's call the region above all four lines the TOP; below all four lines the BOTTOM; between lines (1) and (2) the UPPER STRIP, and between lines (3) and (4) the LOWER STRIP
- The total number of dots in $S \times T$ is $\frac{p-1}{2} \frac{q-1}{2}$.
- Let the total number of dots in the top region be M; the number of dots in the bottom region be N
- We'll check the following things:
(1) There are no dots between lines (2) and (3)
(2) There are m dots in the upper strip
(3) There are n dots in the lower strip
(4) The number of dots in the top (M) and bottom (N) regions are the same, i.e., $M=N$.

Suppose we've proven all these. Then we're basically done:

- since no dots in the middle strip (between (2) and (3)), we have (using $M=N$ in the last equality):

$$
\text { total \# of dots }=\frac{p-1}{2} \frac{q-1}{2}=m+n+M+N=m+n+2 M
$$

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{m}(-1)^{n}=(-1)^{m+n}=(-1)^{m+n+2 M}=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

which is what we wanted to prove.

- now we check the facts above.
- no dots in middle strip: a point (s, t) is in middle strip iff

$$
-1<p t-q s<1
$$

which means for LPs: $p t-q s=0$, and this is impossible since p, q prime and $t<q$, $s<p$.

m dots in the upper strip:

- first we show that for each $s \in S$ there is at most one $t \in T$ such that $(s, t) \in$ upper strip
- suppose there were two, say t_{1}, t_{2}.
- show $\left|t_{1}-t_{2}\right|=0$:

$$
p\left|t_{1}-t_{2}\right|=\left|\left(p t_{1}-q s\right)-\left(p t_{2}-q s\right)\right|<\frac{p-1}{2}<p
$$

- the inequality comes from looking at $1 \leq p t_{i}-q s \leq \frac{p-1}{2}$
- only way $p \cdot($ something $)<p$ in integers is if something $=0$
- so number of dots in upper strip $=$ number of s such that there exists $t \in T$ with (s, t) in upper strip
- now we show the number of these is m.
- one direction: say for some $s \in S$, there is a $t \in T$ with (s, t) in upper strip. then $p t-q s \leq \frac{p-1}{2}$ means $p t-q s \in S$, say $p t-q s=\sigma \in S$ then

$$
q s=p t-\sigma \equiv-\sigma \quad \bmod p
$$

which shows $q s \notin S$.

- conclusion 1: for every dot in the strip, we get an $s \in S$ such that $q s \notin S$
- other direction: say we have an $s \in S$ such that $q s \notin S$
- then $-q s \in S \bmod p$, so

$$
-q s+k p=\alpha
$$

where $1 \leq \alpha \leq \frac{p-1}{2}$.

- since $\alpha>0$ and $-q s<0$, must have $k>0$.

$$
0<k p=q s+\alpha \leq q \frac{p-1}{2}+\frac{p-1}{2}=(q+1) \frac{p-1}{2}
$$

therefore

$$
0<k \leq \frac{(q+1)(p-1)}{2 p}<\frac{q+1}{2}
$$

in integers, this imples

$$
1 \leq k \leq \frac{q-1}{2}
$$

so $k \in T$, and we have produced a point (s, k) in the upper strip.

- conclusion 2: for every $s \in S$ such that $q s \notin S$, we get a point in the strip.
- so they're in bijection, hence $m=$ number of dots in upper strip.
n dots in lower strip - this is similarr to the above argument - we skip it.
proof that $M=N$ Recall that M is the number of dots in the TOP region, N the number of dots in the BOTTOM region.
- we build a bijection between TOP and BOTTOM
- first look at this bijection from $S \times T$ to itself, call it ϕ :

$$
\phi:(s, t) \mapsto\left(\frac{p+1}{2}-s, \frac{q+1}{2}-t\right)
$$

- geometrically, ϕ sort of reflects, with a little twist as well.
- check it's a bijection, by calculating that $\phi \circ \phi$ does nothing, so ϕ is its own inverse.
- now we claim that ϕ sends points in TOP into BOTTOM: this means $N \geq M$.
- Say (s, t) is in the top region. Then ϕ sends it to $\left(\frac{p+1}{2}-s, \frac{q+1}{2}-t\right)$, and we have to check that this new point satisfies the inequalities defining the bottom region
- a point (x, y) is in the bottom region if $p y-q x<-\frac{q-1}{2}$.
- check:

$$
\begin{aligned}
p\left(\frac{q+1}{2}-t\right)-q\left(\frac{p+1}{2}-s\right) & =\frac{p}{2}-p t-\frac{q}{2}+q s \\
& =-p t-q s)+\frac{p-1}{2}-\frac{q-1}{2} \\
& <-\frac{q-1}{2}
\end{aligned}
$$

- also ϕ sends points in BOTTOM into TOP: this means $M \geq N$ (similar to above, and skipped)
- since $M \leq N$ and $N \leq M$, we get $M=N$, and that finishes it!!

