MATH 115, SUMMER 2012
LECTURE 16

JAMES MCIVOR

Today we mark the halfway point of the course by proving one of the most
famous theorems in number theory:

Theorem 1 (Quadratic Reciprocity Law). Let p,q be distinct odd primes. Then

(£) (@)
0)- (e
- or also:

Look at the two congruences:

Other ways to say it:

z2=p modqg and z>=¢ modp

If either or both of p and g are congruent to 1 mod 4, then either both congruences
have a solution, or both don’t. If p,q =3 mod 4, then one has a solution and the
other does not.

- loosely, if either prime is 1 mod 4, they behave the same; if both are 3 mod 4,
they behave differently

1. HOw TO USE IT

- tricks we’ve learned so far don’t help us to deal with the Legendre symbol (%)

when p is large.
- QRL lets us “flip it”.

Examples 1.1. (1)

(3)- () (3) -

(using yesterday’s results at the last step)

(2)
() = () = (i) = (i) (i) =0 ()= (5) =
(3) Determine whether the congruence 2 = 103 mod 257 has a solution.
(4) (%)
®) (51)
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2. HOw TO PROVE IT

We'll give a mildly geometric/combinatorial proof, using Gauss’ Lemma, which
differs from the proof in the textbook.

Proof. Set
-1 -1
S:{Lzuwgg—h T:{Lzuwg?ﬁ
- let m = number of s € S such that ¢gs € S.
- let n = number of t € T such that pt inT.

- by Gauss’ Lemma, we have

(£)- ()

In R2, look at the subset
SxT=A{(s,t)|s€eS,teT}

We call a point in R? whose coordinates are both integers a lattice point (LP);
sometimes I'll call them dots.

*** The idea of the proof is to count dots in various regions of S x T. Look at
the picture to follow the argument.***

- inside S x T', draw the following four parallel lines:

—1
(1) zﬁ—qs=£§f
(2) pt—qs=1
(3) pt—qs= -1
—1
(4) m—w=—%f

- let’s call the region above all four lines the TOP; below all four lines the
BOTTOM; between lines (1) and (2) the UPPER STRIP, and between lines (3)
and (4) the LOWER STRIP

- The total number of dots in S x T is %1‘12;1.

- Let the total number of dots in the top region be M; the number of dots in the
bottom region be N

- We'll check the following things:

(1) There are no dots between lines (2) and (3)
(2) There are m dots in the upper strip
(3) There are n dots in the lower strip
(4) The number of dots in the top (M) and bottom () regions are the same,
ie, M =N.
Suppose we’ve proven all these. Then we’re basically done:
- since no dots in the middle strip (between (2) and (3)), we have (using M = N
in the last equality):
p—1lg—1

total#ofdots:TT:m+n+M+N:m+n+2M,

SO
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)5 ) = m e = (= (et =
q

which is what we wanted to prove.
- now we check the facts above.
- no dots in middle strip: a point (s,?) is in middle strip iff

—1<pt—gs <1,

which means for LPs: pt — ¢s = 0, and this is impossible since p, ¢ prime and ¢ < ¢,
s < p.

m dots in the upper strip:

- first we show that for each s € S there is at most one ¢ € T such that (s,t) €
upper strip

- suppose there were two, say t1, to.
show [t1 — ta] = O:

p—1
plt1 — t2| = |(pt1 — gs) — (pt2 — gs)| < —5 <P

- the inequality comes from looking at 1 < pt; — gs < p—;l

- only way p-(something) < p in integers is if something =0

- so number of dots in upper strip = number of s such that there exists t € T
with (s,¢) in upper strip

- now we show the number of these is m.

- one direction: say for some s € S, there is a t € T with (s,t) in upper strip.
then pt — gs < p%l means pt —qs € S, say pt —qs = o € S then

qgs=pt—oc=—-—0 modp

which shows ¢s & S.
- conclusion 1: for every dot in the strip, we get an s € S such that gs € S
- other direction: say we have an s € S such that gs € S
- then —gs € S mod p, so
—qs +kp =,
where 1 < a < %.
- since a > 0 and —gs < 0, must have k& > 0.

—1 —1 —1
0<kp=qs+a§qL+L=(q+1)L
2 2 2
therefore
Hp-1 1
0cr<@te-1 a+
2p 2
in integers, this imples
1<k< q;l

so k € T, and we have produced a point (s, k) in the upper strip.
- conclusion 2: for every s € S such that ¢gs ¢ S, we get a point in the strip.
- so they’re in bijection, hence m = number of dots in upper strip.
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n dots in lower strip - this is similarr to the above argument - we skip it.

proof that M = N Recall that M is the number of dots in the TOP region, N
the number of dots in the BOTTOM region.

- we build a bijection between TOP and BOTTOM

- first look at this bijection from S x T to itself, call it ¢:

6 (s,1) o (P20 =5, 1L
2 2

- geometrically, ¢ sort of reflects, with a little twist as well.

- check it’s a bijection, by calculating that ¢ o ¢ does nothing, so ¢ is its own
inverse.

- now we claim that ¢ sends points in TOP into BOTTOM: this means N > M.

- Say (s, t) is in the top region. Then ¢ sends it to (pTH —s, %1 —t), and we have
to check that this new point satisfies the inequalities defining the bottom region

. .. . . -1
- a point (z,y) is in the bottom region if py — gz < —45=.

- check:
q+1 p+1 P q
L P =L _ =2
p(— )—a(F5— =) =5 —pt—5 +gs
p—1 qg-—1
:7t— S —
pt — qs) + 5 2
q—1
<_7
2

- also ¢ sends points in BOTTOM into TOP: this means M > N (similar to
above, and skipped)
-since M < N and N < M, we get M = N, and that finishes it!!
|



