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LECTURE 16

JAMES MCIVOR

Today we mark the halfway point of the course by proving one of the most
famous theorems in number theory:

Theorem 1 (Quadratic Reciprocity Law). Let p, q be distinct odd primes. Then(
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Other ways to say it:
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- or also:
Look at the two congruences:

x2 ≡ p mod q and x2 ≡ q mod p

If either or both of p and q are congruent to 1 mod 4, then either both congruences
have a solution, or both don’t. If p, q ≡ 3 mod 4, then one has a solution and the
other does not.

- loosely, if either prime is 1 mod 4, they behave the same; if both are 3 mod 4,
they behave differently

1. How to use it

- tricks we’ve learned so far don’t help us to deal with the Legendre symbol
(

a
p

)
when p is large.

- QRL lets us “flip it”.
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(using yesterday’s results at the last step)
(2)(

19

101

)
= (−1)9·50

(
101

19

)
=

(
6

19

)
=

(
2

19

)(
3

19

)
= (−1)(−1)1·9

(
19

3

)
=

(
1

3

)
= 1

(3) Determine whether the congruence x2 ≡ 103 mod 257 has a solution.
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2. How to prove it

We’ll give a mildly geometric/combinatorial proof, using Gauss’ Lemma, which
differs from the proof in the textbook.

Proof. Set

S = {1, 2, . . . , p− 1

2
}, T = {1, 2, . . . , q − 1

2
}

- let m = number of s ∈ S such that qs 6∈ S.
- let n = number of t ∈ T such that pt 6 inT .
- by Gauss’ Lemma, we have(

p

q

)
= (−1)n,

(
q

p

)
= (−1)m

In R2, look at the subset

S × T = {(s, t) | s ∈ S, t ∈ T}

We call a point in R2 whose coordinates are both integers a lattice point (LP);
sometimes I’ll call them dots.

*** The idea of the proof is to count dots in various regions of S × T . Look at
the picture to follow the argument.***

- inside S × T , draw the following four parallel lines:

pt− qs =
p− 1

2
(1)

pt− qs = 1(2)

pt− qs = −1(3)

pt− qs = −q − 1

2
(4)

- let’s call the region above all four lines the TOP; below all four lines the
BOTTOM; between lines (1) and (2) the UPPER STRIP, and between lines (3)
and (4) the LOWER STRIP

- The total number of dots in S × T is p−1
2

q−1
2 .

- Let the total number of dots in the top region be M ; the number of dots in the
bottom region be N

- We’ll check the following things:

(1) There are no dots between lines (2) and (3)
(2) There are m dots in the upper strip
(3) There are n dots in the lower strip
(4) The number of dots in the top (M) and bottom (N) regions are the same,

i.e., M = N .

Suppose we’ve proven all these. Then we’re basically done:
- since no dots in the middle strip (between (2) and (3)), we have (using M = N

in the last equality):

total # of dots =
p− 1

2

q − 1

2
= m+ n+M +N = m+ n+ 2M,

so
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which is what we wanted to prove.
- now we check the facts above.
- no dots in middle strip: a point (s, t) is in middle strip iff

−1 < pt− qs < 1,

which means for LPs: pt− qs = 0, and this is impossible since p, q prime and t < q,
s < p.

m dots in the upper strip:
- first we show that for each s ∈ S there is at most one t ∈ T such that (s, t) ∈

upper strip
- suppose there were two, say t1, t2.
- show |t1 − t2| = 0:

p|t1 − t2| = |(pt1 − qs)− (pt2 − qs)| <
p− 1

2
< p

- the inequality comes from looking at 1 ≤ pti − qs ≤ p−1
2

- only way p·(something) < p in integers is if something =0
- so number of dots in upper strip = number of s such that there exists t ∈ T

with (s, t) in upper strip
- now we show the number of these is m.
- one direction: say for some s ∈ S, there is a t ∈ T with (s, t) in upper strip.

then pt− qs ≤ p−1
2 means pt− qs ∈ S, say pt− qs = σ ∈ S then

qs = pt− σ ≡ −σ mod p

which shows qs 6∈ S.
- conclusion 1: for every dot in the strip, we get an s ∈ S such that qs 6∈ S
- other direction: say we have an s ∈ S such that qs 6∈ S
- then −qs ∈ S mod p, so

−qs+ kp = α,

where 1 ≤ α ≤ p−1
2 .

- since α > 0 and −qs < 0, must have k > 0.

0 < kp = qs+ α ≤ q p− 1

2
+
p− 1

2
= (q + 1)

p− 1

2
therefore

0 < k ≤ (q + 1)(p− 1)

2p
<
q + 1

2

in integers, this imples

1 ≤ k ≤ q − 1

2
so k ∈ T , and we have produced a point (s, k) in the upper strip.

- conclusion 2: for every s ∈ S such that qs 6∈ S, we get a point in the strip.
- so they’re in bijection, hence m = number of dots in upper strip.
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n dots in lower strip - this is similarr to the above argument - we skip it.

proof that M = N Recall that M is the number of dots in the TOP region, N
the number of dots in the BOTTOM region.

- we build a bijection between TOP and BOTTOM
- first look at this bijection from S × T to itself, call it φ:

φ : (s, t) 7→ (
p+ 1

2
− s, q + 1

2
− t)

- geometrically, φ sort of reflects, with a little twist as well.
- check it’s a bijection, by calculating that φ ◦ φ does nothing, so φ is its own

inverse.
- now we claim that φ sends points in TOP into BOTTOM: this means N ≥M .

- Say (s, t) is in the top region. Then φ sends it to (p+1
2 −s,

q+1
2 −t), and we have

to check that this new point satisfies the inequalities defining the bottom region
- a point (x, y) is in the bottom region if py − qx < − q−1

2 .
- check:

p(
q + 1

2
− t)− q(p+ 1

2
− s) =

p

2
− pt− q

2
+ qs

= −pt− qs) +
p− 1

2
− q − 1

2

< −q − 1

2

- also φ sends points in BOTTOM into TOP: this means M ≥ N (similar to
above, and skipped)

- since M ≤ N and N ≤M , we get M = N , and that finishes it!!
�


