MATH 115, SUMMER 2012 LECTURE 16

JAMES MCIVOR

Today we mark the halfway point of the course by proving one of the most famous theorems in number theory:

Theorem 1 (Quadratic Reciprocity Law). Let p, q be distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Other ways to say it:

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

- or also:

Look at the two congruences:

$$x^2 \equiv p \mod q$$
 and $x^2 \equiv q \mod p$

If either or both of p and q are congruent to $1 \mod 4$, then either both congruences have a solution, or both don't. If $p, q \equiv 3 \mod 4$, then one has a solution and the other does not.

- loosely, if either prime is 1 mod 4, they behave the same; if both are 3 mod 4, they behave differently

1. How to use it

- tricks we've learned so far don't help us to deal with the Legendre symbol $\left(\frac{a}{p}\right)$ when p is large.

- QRL lets us "flip it".

Examples 1.1.

$$\left(\frac{7}{23}\right) = (-1)^{3 \cdot 11} \left(\frac{23}{7}\right) = -\left(\frac{2}{7}\right) = -1$$

(using yesterday's results at the last step)

(1)

$$\begin{pmatrix} \frac{19}{101} \end{pmatrix} = (-1)^{9 \cdot 50} \begin{pmatrix} \frac{101}{19} \end{pmatrix} = \begin{pmatrix} \frac{6}{19} \end{pmatrix} = \begin{pmatrix} \frac{2}{19} \end{pmatrix} \begin{pmatrix} \frac{3}{19} \end{pmatrix} = (-1)(-1)^{1 \cdot 9} \begin{pmatrix} \frac{19}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \end{pmatrix} = 1$$

$$(3) \text{ Determine whether the congruence } x^2 \equiv 103 \mod 257 \text{ has a solution.}$$

 $\begin{array}{c} (4) & \left(\frac{54}{17}\right) \\ (5) & \left(\frac{-24}{31}\right) \end{array}$

(2)

JAMES MCIVOR

2. How to prove it

We'll give a mildly geometric/combinatorial proof, using Gauss' Lemma, which differs from the proof in the textbook.

Proof. Set

$$S = \{1, 2, \dots, \frac{p-1}{2}\}, \quad T = \{1, 2, \dots, \frac{q-1}{2}\}$$

- let m = number of $s \in S$ such that $qs \notin S$.
- let n = number of $t \in T$ such that $pt \not inT$.

- by Gauss' Lemma, we have

$$\left(\frac{p}{q}\right) = (-1)^n, \quad \left(\frac{q}{p}\right) = (-1)^m$$

In \mathbb{R}^2 , look at the subset

$$S \times T = \{(s,t) \mid s \in S, t \in T\}$$

We call a point in \mathbb{R}^2 whose coordinates are both integers a **lattice point** (LP); sometimes I'll call them dots.

*** The idea of the proof is to count dots in various regions of $S \times T$. Look at the picture to follow the argument.***

- inside $S \times T$, draw the following four parallel lines:

$$pt - qs = \frac{p-1}{2}$$

$$(2) pt - qs = 1$$

$$(3) pt - qs = -1$$

$$pt - qs = -\frac{q-1}{2}$$

- let's call the region above all four lines the TOP; below all four lines the BOTTOM; between lines (1) and (2) the UPPER STRIP, and between lines (3)and (4) the LOWER STRIP

The total number of dots in S × T is p-1/2 q-1/2.
Let the total number of dots in the top region be M; the number of dots in the bottom region be N

- We'll check the following things:

- (1) There are no dots between lines (2) and (3)
- (2) There are m dots in the upper strip
- (3) There are n dots in the lower strip
- (4) The number of dots in the top (M) and bottom (N) regions are the same, i.e., M = N.

Suppose we've proven all these. Then we're basically done:

- since no dots in the middle strip (between (2) and (3)), we have (using M = Nin the last equality):

total # of dots =
$$\frac{p-1}{2}\frac{q-1}{2} = m + n + M + N = m + n + 2M$$
,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^m (-1)^n = (-1)^{m+n} = (-1)^{m+n+2M} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

which is what we wanted to prove.

- now we check the facts above.

- no dots in middle strip: a point (s, t) is in middle strip iff

$$-1 < pt - qs < 1,$$

which means for LPs: pt - qs = 0, and this is impossible since p, q prime and t < q, s < p.

m dots in the upper strip:

- first we show that for each $s \in S$ there is at most one $t \in T$ such that $(s,t) \in T$ upper strip

- suppose there were two, say t_1, t_2 .
- show $|t_1 t_2| = 0$:

$$p|t_1 - t_2| = |(pt_1 - qs) - (pt_2 - qs)| < \frac{p-1}{2} < p$$

- the inequality comes from looking at $1 \leq pt_i - qs \leq \frac{p-1}{2}$

- only way $p \cdot (\text{something}) < p$ in integers is if something = 0

- so number of dots in upper strip = number of s such that there exists $t \in T$ with (s, t) in upper strip

- now we show the number of these is m.

- one direction: say for some $s \in S$, there is a $t \in T$ with (s, t) in upper strip. then $pt - qs \le \frac{p-1}{2}$ means $pt - qs \in S$, say $pt - qs = \sigma \in S$ then

$$qs = pt - \sigma \equiv -\sigma \mod p$$

which shows $qs \notin S$.

- conclusion 1: for every dot in the strip, we get an $s \in S$ such that $qs \notin S$

- other direction: say we have an $s \in S$ such that $qs \notin S$

- then $-qs \in S \mod p$, so

$$-qs + kp = \alpha,$$

where $1 \le \alpha \le \frac{p-1}{2}$. - since $\alpha > 0$ and -qs < 0, must have k > 0.

$$0 < kp = qs + \alpha \le q\frac{p-1}{2} + \frac{p-1}{2} = (q+1)\frac{p-1}{2}$$

therefore

$$0 < k \le \frac{(q+1)(p-1)}{2p} < \frac{q+1}{2}$$

in integers, this imples

$$1 \le k \le \frac{q-1}{2}$$

so $k \in T$, and we have produced a point (s, k) in the upper strip.

- conclusion 2: for every $s \in S$ such that $qs \notin S$, we get a point in the strip.

- so they're in bijection, hence m = number of dots in upper strip.

JAMES MCIVOR

n dots in lower strip - this is similar to the above argument - we skip it.

proof that M = N Recall that M is the number of dots in the TOP region, N the number of dots in the BOTTOM region.

- we build a bijection between TOP and BOTTOM

- first look at this bijection from $S \times T$ to itself, call it ϕ :

$$\phi \colon (s,t) \mapsto (\frac{p+1}{2} - s, \frac{q+1}{2} - t)$$

- geometrically, ϕ sort of reflects, with a little twist as well.

- check it's a bijection, by calculating that $\phi \circ \phi$ does nothing, so ϕ is its own inverse.

- now we claim that ϕ sends points in TOP into BOTTOM: this means $N \ge M$.

- Say (s,t) is in the top region. Then ϕ sends it to $(\frac{p+1}{2}-s, \frac{q+1}{2}-t)$, and we have to check that this new point satisfies the inequalities defining the bottom region

- a point (x, y) is in the bottom region if $py - qx < -\frac{q-1}{2}$. - check:

$$p(\frac{q+1}{2}-t) - q(\frac{p+1}{2}-s) = \frac{p}{2} - pt - \frac{q}{2} + qs$$
$$= -pt - qs) + \frac{p-1}{2} - \frac{q-1}{2}$$
$$< -\frac{q-1}{2}$$

- also ϕ sends points in BOTTOM into TOP: this means $M \geq N$ (similar to above, and skipped)

- since $M \leq N$ and $N \leq M$, we get M = N, and that finishes it!!

4