MATH 115, SUMMER 2012
 LECTURE 15

JAMES MCIVOR

Today we gather more results about the Legendre symbol.
Recall: last time we

- defined QRs and QNRs
- defined the Legendre symbol
- proved Euler's criterion, and its corollary, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$.
- gathered a few other properties

1. Gauss' Lemma

- Tomorrow we'll prove the famous and enormously useful Quadratic Reciprocity Law, which deals with the Legendre symbol for odd primes.
- Our goal today is to understand it for the prime 2.
- Namely, what is $\left(\frac{2}{p}\right)$? This takes a little more work than you think.

Theorem 1. (Gauss' Lemma) Let p be an odd prime and a an integer with $(a, p)=$ 1. Consider the least positive residues of the integers $a, 2 a, \ldots, \frac{p-1}{2} a$. Let n be the number of these residues which are greater than $\frac{p}{2}$. Then

$$
\left(\frac{a}{p}\right)=(-1)^{n}
$$

We'll deduce this as a corollary of the following more general result. I think this proof is nicer than the textbook's.

Theorem 2. Let S be any subset of $(\mathbb{Z} / p)^{\times}$with the following property: for each $x \in(\mathbb{Z} / p)^{\times}$, either $x \in S$ or $-x \in S$ (but not both). For each $a \in(\mathbb{Z} / p)^{\times}$, define $\mu(a)$ to be the number of elements t of S such that (at) is not in S. Then

$$
\left(\frac{a}{p}\right)=(-1)^{\mu(a)}
$$

- For example, if $p=5$, then $(\mathbb{Z} / p)^{\times}=\{1,2,3,4\}$.
- Take S to be the subset $\{1,3\}$.
- Check this S satisfies the stated property.
- Take $a=3$. We check for each $t=1,3$, whether $3 t \in S$. (note we have to multiply our a only by things in $S!$)
$-1 \cdot 3 \in S .3 \cdot 3=9 \equiv 4 \notin S$.
- Thus $\mu(3)=1$, so the theorem says that

$$
\left(\frac{3}{5}\right)=(-1)^{1}=-1
$$

- so 3 is a QNR mod 5. True - we already saw that the only QRs mod 5 are 1 and 4.

Proof of Theorem 2. - in this proof, we consider all elements as being in the ring \mathbb{Z} / p, so " $=$ " means congruent $\bmod p$

- Let $S=\left\{a_{1}, \ldots, a_{r}\right\} \subset(\mathbb{Z} / p)^{\times}$have the stated property.
- for each a_{i}, we look at the elements $a_{i} n$ and $-a_{i} n$.
- exactly one of them is in S, for each i.
- Moreover, if $i \neq j$, then $a_{i} n \neq a_{j} n$ or $-a_{j} n$.
- Reason: if $a_{i} n=a_{j} n$, then since $n \in(\mathbb{Z} / p)^{\times}$, it's a unit. cancel it to get $a_{i}=a_{j}$. No good!
- similarly, if $a_{i} n=-a_{j} n$, get $a_{i}=-a_{j} \notin S$ - contradiction.
- so one list of elements of S is the one we started with, $\left\{a_{1}, \ldots, a_{r}\right\}$
- another way is $\left\{ \pm a_{1} n, \pm a_{2} n, \ldots, \pm a_{r} n\right\}$, where it's negative for each i that makes $a_{i} n \notin S$ (write out lists side by side for clarity)
- there are $\mu(n)$ negative signs in the second list, by def of μ.
- the products must be equal, since they're just two ways of listing S. It gives

$$
\prod_{a \in S} a n=(-1)^{\mu(n)} \prod_{a \in S} a
$$

- cancel the products, leaving

$$
n^{\frac{p-1}{2}}=(-1)^{\mu(n)}
$$

since there are $\frac{p-1}{2}$ elements in S.

Proof of Gauss' Lemma. We just have to check that $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$ has the stated property. This is clear.

2. Computing $\left(\frac{2}{p}\right)$

Theorem 3. Let p be an odd prime. Then

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{ll}
1 & \text { if } p \equiv \pm 1 \quad \bmod 8 \\
-1 & \text { if } p \equiv \pm 3
\end{array} \quad \bmod 8 .\right.
$$

Proof. We use Theorem 2 with $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$. According to this, we look at the set

$$
2 S=\{2 s \mid s \in S\}=\{2,4,6, \ldots, p-1\}
$$

and we ask: how many of these integers are greater than $p / 2$?

- Say the answer is m. Then by Gauss' Lemma, $\left(\frac{2}{p}\right)=(-1)^{m}$.
- equivalently: how many even numbers $2 s$ are there such that

$$
\frac{p+1}{2} \leq 2 s \leq p-1 ?
$$

- equivalently, how many integers s are in the interval $\left[\frac{p+1}{4}, \frac{p-1}{2}\right]$?
- every odd number is congruent to one of ± 1 or $\pm 3 \bmod 8$,
- write $p=8 k+\alpha$, where $\alpha= \pm 1$ or ± 3.
- note: if $a<b \in \mathbb{Z}$, number of integers in interval $[a, b]=b-a+1$.
- case 1: $\alpha=1$
- then want number of integers s in the range $\left[2 k+\frac{1}{2}, 4 k\right]=$ number of integers in $[2 k+1,4 k]=4 k-(2 k+1)+1=2 k$.
- case 2: $\alpha=-1$
- want number of integers s in the range $[2 k, 4 k-1]=4 k-1-2 k+1=2 k$.
- So in both of these cases, the number of elements we want is even, and $\left(\frac{2}{p}\right)=$ $(-1)^{2 k}=1$.
- case 3: $\alpha=3$
- want number of integers in the range $[2 k+1,4 k+1]=4 k+1-(2 k+1)+1=2 k+1$, which is odd, so $\left(\frac{2}{p}\right)=(-1)^{2 k+1}=-1$
- case 4: $\alpha=-3$
- want: number of integers in range $\left[2 k-\frac{1}{2}, 4 k-2\right]=$ number of integers in range $[2 k, 4 k-2]=4 k-2-2 k+1=2 k-1$, which is odd, so $\left(\frac{2}{p}\right)=(-1)^{2 k-1}=-1$
[first go over back of WS from yesterday]
(1) Fun problem (not related to quadratic residues): find the positive integer x such that

$$
x^{9}=760231058654565217=7.6023 \ldots \times 10^{17}
$$

[Hint: apply Euler's Theorem with the modulus 20]
(2) Check that, $\bmod 11$, the set $S=\{2,4,6,8,10\}$ satisfies the conditions of Theorem 2. Use that Theorem to compute $\left(\frac{3}{11}\right)$. Answer $=1$ (5 and 6 are square roots of $3 \bmod 11$). Check it "by hand".
(3) Useful rephrase of the $\left(\frac{2}{p}\right)$ calculation: Show that

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

(4) (NZM 3.1.16) Show that if a is a $\mathrm{QR} \bmod m$ and $a b \equiv 1 \bmod m$, then b is also a QR mod m. Then prove that the product of all the $\mathrm{QRs} \bmod m$ is congruent to 1 if $p \equiv 3 \bmod 4$ and congruent to -1 if $p \equiv 1 \bmod 4$.
(5) Let p be prime and $(a, p)=1$. Prove that if $a^{2^{n}} \equiv-1 \bmod p$ then a has order $2^{n+1} \bmod p$.
(6) Let $F_{n}=2^{2^{n}}+1$ (this is called the nth Fermat number). Let $n \geq 2$, and pick a prime divisor q of F_{n}. Prove that 2 has order $2^{n+1} \bmod q$, using the previous exercise.
(7) (notation as above) Prove that $q \equiv 1 \bmod 2^{n+1}$.
(8) (notation as above) Prove that there exists an integer a such that $a^{2^{n+1}} \equiv$ $-1 \bmod q$, using the value of $\left(\frac{2}{q}\right)$.

