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LECTURE 15

JAMES MCIVOR

Today we gather more results about the Legendre symbol.
Recall: last time we
- defined QRs and QNRs
- defined the Legendre symbol

- proved Euler’s criterion, and its corollary,
(
a
p

)
≡ a

p−1
2 mod p.

- gathered a few other properties

1. Gauss’ Lemma

- Tomorrow we’ll prove the famous and enormously useful Quadratic Reciprocity
Law, which deals with the Legendre symbol for odd primes.

- Our goal today is to understand it for the prime 2.

- Namely, what is
(

2
p

)
? This takes a little more work than you think.

Theorem 1. (Gauss’ Lemma) Let p be an odd prime and a an integer with (a, p) =
1. Consider the least positive residues of the integers a, 2a, . . . , p−12 a. Let n be the
number of these residues which are greater than p

2 . Then(
a

p

)
= (−1)n

We’ll deduce this as a corollary of the following more general result. I think this
proof is nicer than the textbook’s.

Theorem 2. Let S be any subset of (Z/p)× with the following property: for each
x ∈ (Z/p)×, either x ∈ S or −x ∈ S (but not both). For each a ∈ (Z/p)×, define
µ(a) to be the number of elements t of S such that (at) is not in S. Then(

a

p

)
= (−1)µ(a)

- For example, if p = 5, then (Z/p)× = {1, 2, 3, 4}.
- Take S to be the subset {1, 3}.
- Check this S satisfies the stated property.
- Take a = 3. We check for each t = 1, 3, whether 3t ∈ S. (note we have to

multiply our a only by things in S!)
- 1 · 3 ∈ S. 3 · 3 = 9 ≡ 4 6∈ S.
- Thus µ(3) = 1, so the theorem says that(

3

5

)
= (−1)1 = −1

- so 3 is a QNR mod 5. True - we already saw that the only QRs mod 5 are 1
and 4.
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Proof of Theorem 2. - in this proof, we consider all elements as being in the ring
Z/p, so “=” means congruent mod p

- Let S = {a1, . . . , ar} ⊂ (Z/p)× have the stated property.
- for each ai, we look at the elements ain and −ain.
- exactly one of them is in S, for each i.
- Moreover, if i 6= j, then ain 6= ajn or −ajn.
- Reason: if ain = ajn, then since n ∈ (Z/p)×, it’s a unit. cancel it to get

ai = aj . No good!
- similarly, if ain = −ajn, get ai = −aj 6∈ S - contradiction.
- so one list of elements of S is the one we started with, {a1, . . . , ar}
- another way is {±a1n,±a2n, . . . ,±arn}, where it’s negative for each i that

makes ain 6∈ S (write out lists side by side for clarity)
- there are µ(n) negative signs in the second list, by def of µ.
- the products must be equal, since they’re just two ways of listing S. It gives∏

a∈S
an = (−1)µ(n)

∏
a∈S

a

- cancel the products, leaving

n
p−1
2 = (−1)µ(n),

since there are p−1
2 elements in S.

�

Proof of Gauss’ Lemma. We just have to check that S = {1, 2, . . . , p−12 } has the
stated property. This is clear.

�

2. Computing
(

2
p

)
Theorem 3. Let p be an odd prime. Then(

2

p

)
=

{
1 if p ≡ ±1 mod 8

−1 if p ≡ ±3 mod 8
.

Proof. We use Theorem 2 with S = {1, 2, . . . , p−12 }. According to this, we look at
the set

2S = {2s | s ∈ S} = {2, 4, 6, . . . , p− 1}
and we ask: how many of these integers are greater than p/2?

- Say the answer is m. Then by Gauss’ Lemma,
(

2
p

)
= (−1)m.

- equivalently: how many even numbers 2s are there such that

p+ 1

2
≤ 2s ≤ p− 1?

- equivalently, how many integers s are in the interval [p+1
4 , p−12 ]?

- every odd number is congruent to one of ±1 or ±3 mod 8,
- write p = 8k + α, where α = ±1 or ±3.
- note: if a < b ∈ Z, number of integers in interval [a, b] = b− a+ 1.
- case 1: α = 1
- then want number of integers s in the range [2k + 1

2 , 4k] = number of integers
in [2k + 1, 4k] = 4k − (2k + 1) + 1 = 2k.
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- case 2: α = −1
- want number of integers s in the range [2k, 4k − 1] = 4k − 1− 2k + 1 = 2k.

- So in both of these cases, the number of elements we want is even, and
(

2
p

)
=

(−1)2k = 1.
- case 3: α = 3
- want number of integers in the range [2k+1, 4k+1] = 4k+1−(2k+1)+1 = 2k+1,

which is odd, so
(

2
p

)
= (−1)2k+1 = −1

- case 4: α = −3
- want: number of integers in range [2k− 1

2 , 4k−2] = number of integers in range

[2k, 4k − 2] = 4k − 2− 2k + 1 = 2k − 1, which is odd, so
(

2
p

)
= (−1)2k−1 = −1

�
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———————————— Problem Session ————————————

[first go over back of WS from yesterday]

(1) Fun problem (not related to quadratic residues): find the positive integer
x such that

x9 = 760231058654565217 = 7.6023...× 1017

[Hint: apply Euler’s Theorem with the modulus 20]
(2) Check that, mod 11, the set S = {2, 4, 6, 8, 10} satisfies the conditions of

Theorem 2. Use that Theorem to compute
(

3
11

)
. Answer = 1 (5 and 6 are

square roots of 3 mod 11). Check it “by hand”.

(3) Useful rephrase of the
(

2
p

)
calculation: Show that(

2

p

)
= (−1)(p

2−1)/8

(4) (NZM 3.1.16) Show that if a is a QR mod m and ab ≡ 1 mod m, then b is
also a QR mod m. Then prove that the product of all the QRs mod m is
congruent to 1 if p ≡ 3 mod 4 and congruent to -1 if p ≡ 1 mod 4.

(5) Let p be prime and (a, p) = 1. Prove that if a2
n ≡ −1 mod p then a has

order 2n+1 mod p.
(6) Let Fn = 22

n

+ 1 (this is called the nth Fermat number). Let n ≥ 2, and
pick a prime divisor q of Fn. Prove that 2 has order 2n+1 mod q, using
the previous exercise.

(7) (notation as above) Prove that q ≡ 1 mod 2n+1.

(8) (notation as above) Prove that there exists an integer a such that a2
n+1 ≡

−1 mod q, using the value of
(

2
q

)
.


