MATH 115, SUMMER 2012
LECTURE 15

JAMES MCIVOR

Today we gather more results about the Legendre symbol.
Recall: last time we

- defined QRs and QNRs

- defined the Legendre symbol

- proved Euler’s criterion, and its corollary, (%) =a" mod D.
- gathered a few other properties

1. GAuss’ LEMMA

- Tomorrow we’ll prove the famous and enormously useful Quadratic Reciprocity
Law, which deals with the Legendre symbol for odd primes.
- Our goal today is to understand it for the prime 2.

- Namely, what is (%)? This takes a little more work than you think.

Theorem 1. (Gauss’ Lemma) Let p be an odd prime and a an integer with (a,p) =
1. Consider the least positive residues of the integers a,2a, ..., p%a. Let n be the
number of these residues which are greater than £. Then
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We'll deduce this as a corollary of the following more general result. I think this
proof is nicer than the textbook’s.

Theorem 2. Let S be any subset of (Z/p)* with the following property: for each
x € (Z/p)*, either x € S or —x € S (but not both). For each a € (Z/p)*, define
w(a) to be the number of elements t of S such that (at) is not in S. Then
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- For example, if p = 5, then (Z/p)* = {1,2,3,4}.

- Take S to be the subset {1, 3}.

- Check this S satisfies the stated property.

- Take a = 3. We check for each ¢t = 1,3, whether 3t € S. (note we have to
multiply our a only by things in S!)

-1-3€5.3-3=9=4¢5.

- Thus u(3) =1, so the theorem says that

()=

- s0 3 is a QNR mod 5. True - we already saw that the only QRs mod 5 are 1
and 4.
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Proof of Theorem 2. - in this proof, we consider all elements as being in the ring
Z/p, so “=" means congruent mod p

- Let S ={a1,...,a,} C (Z/p)* have the stated property.

- for each a;, we look at the elements a;n and —a;n.

- exactly one of them is in S, for each 1.

- Moreover, if i # j, then a;n # a;n or —a;n.

- Reason: if a;n = a;jn, then since n € (Z/p)*, it’s a unit. cancel it to get
a; = a;. No good!

- similarly, if a;n = —a;n, get a; = —a; € S - contradiction.
- so one list of elements of S is the one we started with, {aq,...,a,}
- another way is {f+ain, taan,...,ta,n}, where it’s negative for each i that

makes a;n € S (write out lists side by side for clarity)
- there are u(n) negative signs in the second list, by def of p.
- the products must be equal, since they’re just two ways of listing S. It gives

H an = (—=1)rM H a
acS a€s

- cancel the products, leaving
nz = (_1)1‘(")7

. —1 .
since there are pT elements in S.
O

Proof of Gauss’ Lemma. We just have to check that S = {1,2,..., p%l} has the
stated property. This is clear.
(Il

2. COMPUTING (%)

Theorem 3. Let p be an odd prime. Then
(2)_ 1 ifp=41 mod 8
p)  |-1 ifp=+3 mod8’
Proof. We use Theorem 2 with S = {1,2,..., %} According to this, we look at
the set
25 ={2s|se S} ={2,4,6,...,p—1}
and we ask: how many of these integers are greater than p/2?
- Say the answer is m. Then by Gauss’ Lemma, (%) =(=1)™.

- equivalently: how many even numbers 2s are there such that

1
]%SQSSp—l?

- equivalently, how many integers s are in the interval [%, %]‘?

- every odd number is congruent to one of +1 or +3 mod 8§,

- write p = 8k + a, where a = +1 or +3.

- note: if @ < b € Z, number of integers in interval [a,b] =b—a + 1.

-case l: =1

- then want number of integers s in the range [2k + 3, 4k] = number of integers
in [2k + 1,4k] = 4k — 2k + 1) + 1 = 2k.
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-case 2: a=—1
- want number of integers s in the range [2k,4k — 1] = 4k — 1 — 2k + 1 = 2k.

- So in both of these cases, the number of elements we want is even, and (%) =
(-1)% =1.

-case 3: =3

- want number of integers in the range [2k+1, 4k+1] = 4k+1—(2k+1)+1 = 2k+1,
which is odd, so (%) = (=1)%k+1 = 1

-case 4: v = —3

- want: number of integers in range [2k — %, 4k — 2] = number of integers in range
[2k, 4k — 2] = 4k — 2 — 2k + 1 = 2k — 1, which is odd, so (%) —(c1)2 = 1

O
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Problem Session

[first go over back of WS from yesterday]

(1)

Fun problem (not related to quadratic residues): find the positive integer
x such that

2? = 760231058654565217 = 7.6023... x 10'7

[Hint: apply Euler’s Theorem with the modulus 20]

Check that, mod 11, the set S = {2,4,6,8,10} satisfies the conditions of
Theorem 2. Use that Theorem to compute (1—31) Answer =1 (5 and 6 are
square roots of 3 mod 11). Check it “by hand”.

Useful rephrase of the (%) calculation: Show that

(;) _ (C1)@ D)

(NZM 3.1.16) Show that if a is a QR mod m and ab =1 mod m, then b is
also a QR mod m. Then prove that the product of all the QRs mod m is
congruent to 1 if p =3 mod 4 and congruent to -1 if p=1 mod 4.

Let p be prime and (a,p) = 1. Prove that if a®" = —1 mod p then @ has
order 2"*! mod p.

Let F, = 22" 4+ 1 (this is called the nth Fermat number). Let n > 2, and
pick a prime divisor g of F,,. Prove that 2 has order 2"*! mod ¢, using
the previous exercise.

(notation as above) Prove that ¢ =1 mod 2"+,

(notation as above) Prove that there exists an integer a such that a2 =

—1 mod g, using the value of (%)



