MATH 115, SUMMER 2012 LECTURE 14

JAMES MCIVOR

- We've seen that not all congruences of the form are solvable.
- we've reduced to the case of prime modulus
- we know how to determine whether or not a linear congruence $a x+b \equiv 0$ $\bmod p$ is solvable.
- now we turn to quadratic equations.

1. Quadratic Residues

Definition 1. Let $(a, m)=1$. Then a is called a quadratic residue $\bmod m$ (QR) if the congruence $x^{2} \equiv a \bmod m$ has a solution. Otherwise it is a quadratic nonresidue mod m (QNR).

The idea behind the terminology is that if there's a solution x, then x^{2} is something quadratic, and reducing it mod m gives a "quadratic residue", which is a.

- note there are three cases, really: 1$)(a, m) \neq 1$, or else $(a, m)=1$, and then 2) a is a QR , or 3) a is a QNR. When m is prime, $(a, m)=1$ is automatic.

Example 1.1. Q: What are the quadratic residues mod 5 ?
A: $0,1,2,4$

- Main question: which integers are quadratic residues mod p, for p prime?

To answer this question, we introduce the following useful tool
Definition 2. Let p be an odd prime. For any integer a, the Legendre symbol is the number $\left(\frac{a}{p}\right)$ defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod p \\ -1 & \text { if } a \text { is a quadratic nonresidue } \bmod p \\ 0 & \text { if } p \mid a\end{cases}
$$

Thus it is a sort of "detector" of whether or not a is a QR mod p.
Example 1.2. Compute $\left(\frac{2}{3}\right),\left(\frac{3}{5}\right),\left(\frac{12}{3}\right)$, and $\left(\frac{19}{101}\right)$.

- The last one is too hard - we need to develop some properties of the Legendre symbol first, and then we'll know how to compute it.
- key property for computations:

Proposition 1. If p is an odd prime, then

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad \bmod p
$$

For the proof, we need a famous result that your book proved in 2.8.

Theorem 1. (Euler's Criterion)
If p is an odd prime and $p \wedge a$, then the congruence $x^{2} \equiv a \bmod p$ has two solutions if

$$
a^{\frac{p-1}{2}} \equiv 1 \quad \bmod p
$$

and no solution if

$$
a^{\frac{p-1}{2}} \equiv-1 \quad \bmod p
$$

Proof. First of all, note that

$$
\left(a^{\frac{p-1}{2}}\right)^{2}=a^{p-1} \equiv 1 \quad \bmod p
$$

by FLT, so $a^{\frac{p-1}{2}}$ can only be congruent to $\pm 1 \bmod p$.

- a is a unit since $(a, p)=1$
- if there's a solution at all, it must be a unit, too.
- pick a primitive root g. Then $a=g^{i}$ for some i.
- Any solution x will then be a power of g, say $x=g^{k}$.
-Then the congruence we want to solve (think of i as given and k as unknown)
is

$$
g^{2 k} \equiv g^{i} \quad \bmod p
$$

or equivalently

$$
g^{2 k-i} \equiv 1 \quad \bmod p
$$

which happens if and only if $2 k-i \mid \phi(p)=p-1$.

- This is the same as $2 k \equiv i \bmod p-1$.
- it's a linear congruence! Solution for k iff $(2, p-1) \mid i$. But p odd, so $(2, p-1)=2$
- so solution for k iff $2 \mid i$
- $2 \mid i$ iff $i(p-1) / 2 \equiv 0 \bmod p-1$. (maybe explain this)
$-i(p-1) / 2 \equiv 0 \bmod p-1$ iff $g^{\frac{1(p-1)}{2}} \equiv 1 \bmod p\left(\right.$ by theorem last time: $g^{s} \equiv 1$ $\bmod m$ iff $\phi(m) \mid s$, since g has order $\phi(m))$
- but $g^{\frac{1(p-1)}{2}} \equiv a^{\frac{p-1}{2}}$
- so soln for k (which means soln for x) iff $a^{\frac{p-1}{2}} \equiv 1 \bmod p$.
- note that if there is a sol'n for k, it's unique $\bmod p-1 / 2$, by linear congruence thm. This means two solns $\mathrm{k} \bmod p-1$, so two solns $x \bmod p$.

Now we use this to prove the key property of the Legendre symbol:
Proof. - if $p \mid a$, then $\left(\frac{a}{p}\right)=0$ and also $a^{\frac{p-1}{2}} \equiv 0 \bmod p$.

- Now assume $(a, p)=1$, so $\left(\frac{a}{p}\right)= \pm 1$.
$-\left(\frac{a}{p}\right)=1$ iff $x^{2} \equiv a \bmod p$ has a solution iff $a^{\frac{p-1}{2}} \equiv 1 \bmod p$, by Euler's criterion.

Other useful properties of Legendre symbol

- p is an odd prime, as usual. Then
(1) $\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
(2) (very useful) If $a \equiv b \bmod p$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$
(3) If $p \nmid a$, then $\left(\frac{a^{2}}{p}\right)=1$
(4) $\left(\frac{1}{p}\right)=1$
(5) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}= \begin{cases}1 & \text { if } p \equiv 1 \bmod 4 \\ -1 & \text { if } p \equiv 3 \bmod 4\end{cases}$

Proof. Do it for yourself in the problem session!

- note that the first property means it's only interesting to compute the Legendre symbol when a is prime.
- reason: if $a=p_{1} \cdots p_{r}$, then $\left(\frac{a}{p}\right)=\left(\frac{p_{1}}{p}\right) \cdots\left(\frac{p_{r}}{p}\right)$, so it's enough to know what the $\left(\frac{p_{i}}{p}\right)$ are.

Example 1.3. We use these properties to compute some Legendre symbols.
(1) $\left(\frac{2}{7}\right)$
(2) $\left(\frac{4}{7}\right)$
(3) $\left(\frac{-4}{7}\right)$
(4) $\left(\frac{397}{7}\right)$
(5) $\left(\frac{32}{5}\right)$
(6) $\left(\frac{637}{5}\right)$

Final observation: The list $1^{2}, 2^{2}, 3^{3}, \ldots,\left(\frac{p-1}{2}\right)^{2}$ contains all the quadratic residues $\bmod p$, while $\left(\frac{p+1}{2}\right)^{2}, \ldots,(p-1)^{2}$ are all the quadratic nonresidues.

- so $\bmod p$, there are $\frac{p-1}{2}$ QRs and $\frac{p-1}{2}$ QNRs
- note they're all distinct: if $i^{2} \equiv j^{2} \bmod p($ where $i \not \equiv j \bmod p)$, then $p \mid\left(i^{-} j^{2}\right)=$ $(i+j)(i-j)$, so \ldots

