
MATH 115, SUMMER 2012

LECTURE 13

JAMES MCIVOR

Today we focus on the multiplicative aspects of the integers mod p.

1. Primitive roots in Z/m

For this section, we work in the ring Z/m, so “=” in this ring means congruent
mod m in integers. We are interested in a special type of unit, namely when ak = 1.
We make some preliminary observations:

- If (a,m) 6= 1, then ak 6= 1 unless k = 0.
- So from now on consider (a,m) = 1; then a is a unit, as we have seen before.
- For some k ≥ 0, we must have ak = 1. Reason: look at sequence a, a2, a3 . . ..

The ring is finte, so it repeats somewhere, say am = an, with m < n. Then set
k = n−m, and we have ak = 1.

- We might ask, when is the first point in that sequence that we get 1? That’s
called the order of a:

Definition 1. The order of the unit a ∈ Z/m is the smallest positive h such that
ah = 1.

- Note, in some rings, units may have infinite order, but not in Z/m (or any
finite ring).

Proposition 1. If a has order h, and k is any positive integer, then ak = 1 if and
only if h|k.

Proof. - Pick any k > 0 If k < h, then ak 6= 1 by def of order
- divide: k = hq + r, with 0 ≤ r < h
- then ak = ahq+r = (ah)q · ar = 1 · ar.
- so ak = 1 iff ar = 1 iff r = 0, second iff because r < h and def of order

�

Proposition 2. The order of any unit in Z/m divides φ(m).

- this follows from the previous one by Euler’s lemma: aφ(m) = 1 so h|φ(m).
Is the order of a product the product of the orders of the factors? only when the

two orders are coprime

Proposition 3. If a, b ∈ Z/m have orders g, h, respectively, and g and h are
coprime, then the order of ab is gh.

Proof. - let r = order of ab. Since (ab)gh = 1, we know r|gh. Want: gh|r
- since (g, h) = 1, enough to show g|r and h|r separately
- since (g, h) = 1, g|r will follow from g|hr.
- but ahr = ahrbhr since bhr = (bh)r = 1. this is equal to (ab)hr = ((ab)r)h = 1.
- this shows ahr = 1, so g|hr. Similarly for b. �
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Definition 2. If a is a unit in Z/m, then it has a finite order h, which is a divisor
of φ(m). If it’s actually equal to φ(m), we call a a primitive root modulo m.

You may remember we used this in the proof of Wilson’s theorem. The useful
fact for us there was: if a is a primitive root mod m, then {a, a2, . . . , ah} forms a
reduced residue system mod m.

Example 1.1. - 1 is never a primitive root
- mod 5, 2 and 3 are primitive roots, but 4 is not.
- mod 8, there are NO primitive roots!

So when can we find a primitive root? The answer is known exactly, and is in
your book. For us, we’ll only use that there are primitive roots for a prime modulus.

Before reading the proof, recall from last time (problem session) that we showed
xk ≡ 1 mod p has exactly k solutions if k|p− 1.

Theorem 1. If p is a prime, there are φ(p− 1) primitive roots mod p.

Proof. - To be a primitive root, must have order p− 1.
- Factor p− 1 =

∏
qα

———— Step 1 —————
- for each qα, how many elements of Z/p with that order?
- Answer: qα − qα−1.
- reason: since qα|p − 1, there are exactly qα solutions of xq

α ≡ 1 ( problem
session last time)

- also, qα−1|p− 1, so there are qα−1 solutions of xq
α−1 ≡ 1.

- to have order qα, you must be a solution of the first congruence, but not the
second.

- so there are qα − qα−1 elements of order qα

————– Step 2 ———————
Now we produce at least one primitive root.
- For each prime qi in the factorization, can find an element a1 of order qαii , by

step 1.
- look at these ai’s - their orders are pairwise prime, so by Prop 3, their orders

multiply when we take their product.
- Thus the element a1 · · · ar has order qα1

1 · · · qαrr = p−1, so it’s a primitive root.
————– Step 3 ———————
Now we count the exact number of primitive roots.
First notice the following lemma: If a has order h, and (h, k) = m, then ak has

order h/m. In English, when you take a power, the new order is the old order
divided by gcd(old order, power).

- reason: (ak)n ≡ 1 iff h|kn iff h
m |

k
mn iff h

m |n. The smallest n for which this

holds is h
m itself.

- Now we count the primitive roots. There is one, call it g, by step 2. By def
of primitive root, {g, g2, . . . , gp−1} is a reduced residue system. For each of these
elements gk, it has order p− 1/(k, p− 1), by the above lemma. So the order of gk

is p− 1 iff (k, p− 1) = 1. There are φ(p− 1) such numbers k.
�

Our interest will primarily be in prime modulus congruences, so the above result
is good enough. But we saw at the beginning that there are some moduli for which
there is NO primitive root (8 was our example).
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In conclusion, you may find it interesting that only certain moduli have primitive
roots:

Theorem 2. The only numbers m for which there is a primitive root mod m are
m = 1, 2, 4, or m = pα or 2pα, where α ≥ 1 and p is an odd prime.

Proof. If interested, see the end of 2.8 in your book. We will prove two of the
preliminary results, including Euler’s criterion, tomorrow. �

Algebraic Interpretation: (for those who’ve seen groups before) For any m >
1, the set of units in Z/m forms a group under multiplication. If there is a primitive
root g mod m, then this group of units is cyclic, with g as a generator. In particular,
we see that the group of nonzero elements of the field Z/p (p prime) is a cyclic group.
This is true for any finite field (there are others besides Z/p), but not true, say for
infinite fields such as Q or R.

——————————– Problem Session —————————————–

(1) (NZM 2.8.7) Let p > 2 be prime. How many solutions to xp−1 ≡ 1 mod p?
To xp−1 ≡ 2 mod p?

Solution: Solutions to xp−1 ≡ 1 are elements whose order divides p−1.
Since φ(p) = p − 1, the order of every (nonzero) element divides p − 1,
so every unit works, giving p − 1 solutions. Since every element satisfies
xp−1 ≡ 1, no element satisfies xp−1 ≡ 2, because 1 6≡ 2.

(2) (NZM 2.8.9) Show that 38 ≡ −1 mod 17. Explain why this implies that 3
is a primitive root mod 17.

Solution: Note that the inverse of 3 mod 17 is 6, so the given congruece
is the same as 35 ≡ −63 mod 17, which says 243 ≡ −216 mod 17. This
can be checked directly. Now consider the order of 3 mod 17. It must divide
φ(17) = 16. So it can only be 2,4,8,16. If it’s 2 or 4 or 8, this contradicts
the first part. So 3 has order 16, hence is a primitive root mod 17.

(3) (NZM 2.8.18) Show that if g and g′ are primitive roots mod p, then gg′ is
not.

Solution: This is like a HW problem from last week. product of all
gks ≡ product of all g′ks ≡ −1 by Wilson. But product of (gg′)ks is then
≡ (−1)2 = 1, wheras if gg′) was a primitive root, product of (gg′)ks would
be ≡ −1.

Definition 3. A composite number m is a Carmichael number if for all
units a in Z/m, we have am−1 ≡ 1 mod m.

Fermat’s little theorem shows that every prime has this property. But
the converse of FLT is not true, so there are also some composite numbers m
with am−1 ≡ 1 mod m. These Carmichael numbers are “almost primes”.
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(4) Prove that m is a Carmichael number if and only if m is squarefree (which
means m = p1 · · · pr, with the pi all distinct primes), and pi − 1|m − 1 for
each pi.

- easier direction: “m squarefree and for each p|m, we have p− 1|m− 1”
implies “m is a Carmichael number”

- harder direction: “m is a Carmichael number” implies “m squarefree
and for each p|m, we have p− 1|m− 1”

[Hint for ‘Carmichael implies squarefree and...”: factor n into prime
powers, then choose a primitive root for each prime power. Apply the
CRT.]

Solution: First the “if”: Suppose m is as above. We have to show that
for each 0 < a < m with (a,m) = 1, we have am−1 ≡ 1 mod m. We know
api−1 ≡ 1 mod pi for each i by FLT. Since pi − 1|m − 1, we have also
am−1 ≡ 1 mod pi. So each pi divides am−1 − 1, hence so does m.

The “only if” direction: suppose m is a Carmichael number. m =
pα1
1 · · · pαrr for some primes pi. Choose a primitive root ai for each prime

power pαii (this is possible by the final theorem of the lecture, though we
didn’t prove it). Each ai must be prime to pi because ai is a unit mod
pαii , but if pi|ai, then pαii |a

αi
i , so aαii ≡ 0 mod pαii , and this is impossible

for units. Now we have these elements ai mod pαii , and we use CRT to
construct a mod n (note the pαii are pairwise coprime) such that a ≡ ai
mod pαii . Moreover, each pi 6 | a, since a ≡ ai mod pαii , so a ≡ ai mod pi,
and (ai, pi) = 1. Thus since (a, n) = 1, an−1 ≡ 1 mod n since n is a
Carmichael number. Then an−1 ≡ 1 mod pαii , too, so an−1i ≡ 1 mod pαii ,

hence φ(pαii )|n− 1. But φ(pαii ) = pαii − p
αi−1
i = pαi−1i (pi − 1), so we have

pαi−1i (pi − 1)|n− 1

Now pαii and pi − 1 are coprime, so this means that they both divide

n− 1. So pi − 1|n− 1. But also, pαi−1i can’t divide n− 1 since pi doesn’t,
so αi = 1.


