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LECTURE 12

JAMES MCIVOR

- last time - we used hensel’s lemma to go from roots of polynomial equations
mod p to roots mod p2, mod p3, etc.

- from there we can use CRT to construct roots for other composite moduli
- we review this procedure in the problem session
- today we want to know how to solve polynomial congruences mod p

1. Solving Congruences mod p

- Question: is there a general way to attack the solution of congruences mod p,
where p is prime?

- No. This can be a hard problem.
- if the prime is small, can just guess and check for solutions.
- But the first thing to ask is: are there any solutions at all?
- If no sol’ns mod p, then no soln’s mod m either:

Lemma 1. If the congruence f(x) ≡ 0 mod m has no solution mod p, where p is
a prime factor of m, then it has no solutions mod m either.

Proof - use CRT.
IMPORTANT - to find the degree of the congruence, you must first reduce the

coefficients of f mod p -
- some of the coefficients may drop out and the degree will be lower than the

original degree of f as a polynomial. In particular, when we say a congruence “has
degree n”, we mean that it is not zero mod p.

Next question, what’s the max number of sol’ns? Answer: the degree of the
congruence, or infinity

Key observation: every integer is a solution to the congruence xp − x ≡ 0. This
is just Fermat’s Thm. So the polynomial xp − x is “bad” when we work mod p.
The idea of the following results is to first divide out any copies of this “bad”
polynomial.

The first theorem says we can limit our attention, when working mod p, to
congruences of degree less than p.

Proposition 1. Let f(x) ≡ 0 mod p be a congruence of degree n. If n ≥ p, then
one of two things can happen:

(1) Every integer is a solution of the congruence, or
(2) There is another congruence g(x) ≡ 0 mod p, with leading coefficient one

and degree less than p, whose solutions are the same as those of f(x) ≡ 0
mod p.
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Proof. Define the “bad” polynomial b(x) = xp − x. We use long division for poly-
nomials, dividing f by b:

f(x) = q(x)b(x) + r(x),

where the degree of r(x) is less than p (the degree of b).
- NOTICE - f(x) and r(x) have the same roots, since everything is a root of b.
- 2 cases

(1) r(x) = 0 mod p (this means either r(x) = 0 or every coefficient is divisible
by p. Here everything is a solution.

(2) The solutions of f(x) ≡ 0 mod p are the same as those of r(x) ≡ 0 mod p,
which has degree less than p. Can make leading coefficient 1 by multiplying
through by the inverse of the leading coefficient (remember that Z/p is a
field).

�

Proposition 2. If the congruence f(x) ≡ 0 mod p has degree n < p, then there
are at most n solutions.

Proof. - First write f(x) = anx
n + . . .+a1x+a0. After reducing mod p, we assume

that p 6 |an, so this congruence has degree n.
We do induction on n. The case n = 0 corresponds to the “constant” congruence

f(x) = a, and by our assumption, p 6 |a. So there are 0(= n) solutions. For n = 1,
we have a linear congruence ax + b ≡ 0 mod p. Since p 6 | a, a has an inverse, and
we get a unique solution x ≡ −b · a−1 mod p.

Now assume we’ve proven that every congruence of degree k less than n has at
most k solutions. We’ll prove it when k = n. We use contradiction - assume there
are distinct solutions x1, . . . , xn+1.

- write f(x) = anx
n + . . . + a1x + a0, and define a new polynomial

g(x) = f(x)− an

n∏
i=1

(x− xi)

- the degree n terms cancel, so g has degree less than n, or has no degree, meaning
it’s zero mod p. Each x1, . . . , xn is a solution.

- by induction, if it has a degree, it can’t have n solutions, so it must be the zero
congruence (i.e., every integer solves it). But then in particular xn+1 solves it, so

f(xn+1) ≡ 0 ≡ an(xn+1 − x1) · · · (xn+1 − xn) mod p,

and this is a contradiction since the xi are all distinct mod p. �

Remark 1. The book talks about congruences “having a degree” and it’s a bit
confusing. They say a polynomial does not have a degree when p divides all the
coefficients. I’ve tried to stick to their terminology. But I think a better way to
think about congruences mod p (or mod m even when m is not prime) is to think
of the coefficients as elements of the ring Z/p. Then a polynomial doesn’t have
a degree exactly when all of its coefficients are zero (in the ring Z/p). This is
consistent with more familiar terminology - for polynomials with real coefficients,
we don’t usually assign a degree to the zero polynomial (the reason for this is that
it has infinitely many roots, and we want to say that degree n polynomials have at
most n roots).
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This point of view is the content of Theorem 2.28 in your book, although they
don’t really explain that theorem very well.

Now, to finish our discussion of the number of sol’ns of f(x) ≡ 0 mod p, we ask:
when do they have exactly n solutions? The answer, basically, is: when f divides
the bad polynomial mod p! This means that there is another polynomial q(x) such
that b(x) ≡ q(x)f(x) mod p for all integers x.

Proposition 3. Let f(x) ≡ 0 mod p be a congruence of degree n. It has exactly
n solutions if and only if f divides b(x) = xp − x mod p.

Proof. - First assume it has n solutions (n ≤ p, since there are only p elements in
Z/p).

- Long division:

xp − x = f(x)q(x) + r(x),

where r has degree less than n or else is zero mod p.
- since every integer is a root of b, the solutions of f must also be sol’ns of r (but

not conversely - q has roots too!) So r has at least as many solutions as f , so it
must be zero mod p. Thus f divides b mod p.

- Other direction. If f divides b mod p, we have

b(x) = xp − x ≡ f(x)q(x) mod p

- now count solutions
- since everything is a root of b, there are p solutions to f(x)q(x) ≡ 0 mod p.
- f and q are both monic, i.e., have leading term 1, so the congruences f ≡ 0

and q ≡ 0 have at most n and p − n solutions, respectively (need monic to make
sure they have these degrees mod p)

- roots of b are all either roots of f or roots of q. Specifically, b has p roots mod
p. Let a be one of them, so that f(a)q(a) ≡ 0 mod p. Then f(a)q(a) is a number
with the property that p|f(a)q(a). Since p is prime, p divides one or the other. So
a must be a root of either f or q mod p. Thus each root of b is a root of one of the
two factor, so all the roots of b appear as the roots of f and q,

- f and q must therefore have the full n and p− n roots, respectively. So f has
n roots, like we wanted.

�

Example 1.1. What about the simple polynomial xd − 1. How many roots does
it have mod p? We might hope that it has d roots. The previous prop says that’s
true if it divides xp − x.

Now do some algebra tricks:

(xd − 1)(1 + (xd) + (xd)2 + · · ·+ (xd)n−1) = (xd)n − 1 = xdn − 1

Multiply both sides by x:

x(xd − 1)(1 + (xd) + (xd)2 + · · ·+ (xd)n−1) = xdn+1 − x

This holds for all n > 1. We want the right side to be xp−x, so just take dn+1 = p.
Of course this is only possible if d divides p− 1.

Conclusion: when d|p− 1, the polynomial xd − 1 has exactly d roots mod p.
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——————————— Problem Session ——————————

2. Reduction of Modulus

If we want to solve a congruence of the form

f(x) ≡ 0 mod m

we now have all the tools needed to reduce to the case where m is actually prime.
Let’s first review this process, and then consider what can be said when m is prime.

First, suppose that m has the factorization

m =

r∏
i=1

pai
i ,

where the pi are prime. Now the numbers pa1
1 , . . . , par

r are pairwise relatively prime,
so by the CRT, the solutions x mod m are in bijection with r-tuples of solutions
(x1, . . . , xr), where each xi is a solution of

f(x) ≡ 0 mod pai
i

Alternatively, we can think of this step in the following way. Solving the expres-
sion f(x) ≡ 0 mod m is the same thing as asking: “which elements of the ring
Z/m satisfy the equation f(x) = 0?” By the CRT, the ring Z/m is isomorphic to
the product ring Z/pa1

1 × · · · × Z/par
r , so this is the same as asking which elements

of the ring Z/pa1
1 × · · · × Z/par

r satisfy the given equation. But elements of this
product ring look like (x1, . . . , xr), and the expression f(x) = 0 becomes in this
ring f(x1, . . . , xr) = (f(x1), . . . , f(xr)) = (0, . . . , 0).

Thus it suffices to consider each prime power factor pai
i separately, and when

we’ve solved these, we just multiply them together to get our solutions mod m.
Now, how do we reduce from a prime power factor to a prime factor? This

is Hensel’s lemma. It says that if we have a solution mod p, and the solution is
nonsingular, we can lift it to a unique solution mod p2, mod p3, etc. So once we
have the solutions mod pi, for each i, we can lift them up to the required prime
power factors pai

i , and then we’ll be done.
Let’s look at an explicit example.

Example 2.1. Consider the congruence x2 + x+ 1 ≡ 0 mod 3025. Use the prime
modulus solutions x ≡ 1 mod 5 and x ≡ 4 mod 13 to construct a solution mod
3025.

solution: We do this in steps:

(1) Factor m = 3025, namely 3025 = 52 · 112.
(2) Check that the solutions are nonsingular. The derivative is 2x + 2. Mod

5, we have 2(1) + 2 6≡ 0 mod 5, and mod 13, we have 2(4) + 2 = 10 6≡ 0
mod 13, so they’re both nonsingular.

(3) Lift the mod 5 solution to a solution mod 52. Remember from last lecture
that we first have to find a multiplicative inverse to f ′(a1), where here
a1 = 1 mod 5. Since f ′(1) = 4 mod 5, 4 is the inverse (reason: 4 · 4 =
16 ≡ 1 mod 5). Thus from the formula from last lecture, we get a2 =
a1 − f(a1)f ′(a1)−1 = 1− 5 · 4 = −19 ≡ 6 mod 52.

(4) Lift the mod 13 solution. Here a1 = 4 mod 13, and f ′(a1) = 10, with
inverse 4, so a2 = a1 − f(a1)f ′(a1)−1 = 4 − 26 · 4 = 4 − 104 = −100
mod 132
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(5) Now we have the prime power solutions x ≡ 6 mod 25 and x ≡ −100
mod 169. To get the solution mod 4225 = 25 · 169 we apply the CRT
isomorphism

Example 2.2 (Singular roots). We won’t worry about singular roots too much,
but just give an example to show that the uniqueness of lifting may fail - we may
be able to lift a root mod pj to many roots mod pj+1, or we may not be able to lift
it at all!

Let’s try to solve f(x) = x2− 3x+ 1 ≡ 0 mod 25. We first work mod 5, and get
the solution a1 ≡ 4 mod 5. We have f ′(4) = 5 ≡ 0 mod 5, so this root is singular.
Look at the Taylor series:

f(a1 + tp) = f(a) + tpf ′(a) + t2p2f ′′(a)/2! mod p2

The degree two term would vanish even if the root were nonsingular, as we
saw in the proof. The problem with singular roots is that even the first-order term
vanishes! Because if f ′(a) ≡ 0 mod p, then pf ′(a) ≡ 0 mod p2. In the nonsingular
case, we look for a value of t. We do that here, too, but one of two things happens:
1) every value of t works (we only need consider t mod p), or 2) No value of t works.

Let’s see how it goes for this example. We have f(4+5t) ≡ f(4) mod 52. So we
will find many values of t that work if and only if f(4) ≡ 0 mod 52 (of course, we
already know 4 is a root mod 5, the question is whether it’s also a root mod 25).
Well, f(4) = 5, which is not congruent to zero mod 25. So our root mod 5 doesn’t
lift to a root mod 25...


