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- MAIN THEME of the course: if f(x) is an integer polynomial, how can we
solve the congruence f(x) ≡ 0 mod m?

The Chinese Remainder Theorem is a powerful tool for this. We saw in the
previous theorem that it allows us to reduce the task of solving

f(x) ≡ 0 mod m

to that of solving

f(x) ≡ 0 mod pr

for the various primes p and their powers r occurring in the factorization of m.
– go over how to do this –

Example 0.1. Solve f(x) = 64x7 + 15x4 + 5x2 + x + 1 ≡ 0 mod 288.
First factor 288 = 32 · 9 = 25 · 32.
Since 32 and 9 are coprime, if we have a solution a mod 32 and a solution b mod

9, we can find a solution mod 288 by solving the system

x ≡ a mod 32

x ≡ b mod 9

But how do we get solutions mod 32 and 9? We figure out how today.
Notice here it’s easy to get solns mod 2 and 3:
- mod 2 we have f(x) ≡ x4 + x2 + x+ 1 ≡ x+ x+ x+ 1 ≡ x+ 1. There are only

two choices for x mod 2, and only x = 1 works.
- mod 3 we have f(x) ≡ x7 + 2x2 + x + 1 ≡ x + 2 + x + 1 ≡ 2x, so x = 0 is the

only solution.
- this only works because the primes are small,
- how to get from solutions mod p to solutions mod pk, eg, from mod 2 to mod

32? This is what Hensel’s lemma does.

1. Hensel’s Lemma

Theorem 1 (Hensel’s Lemma). Let f(x) be a polynomial with integer coefficients,
p be a prime, and suppose a is a solution of the congruence f(x) ≡ 0 mod pj such
that f ′(a) 6≡ 0 mod p. Then there exists an integer t (which is unique mod p) such
that a + tpj is a solution to the congruence f(x) ≡ 0 mod pj+1.

In English, it say that if we have a solution mod p, we get a unique solution mod
p2; if we have a solution mod p2, we get a solution mod p3, etc. So all we need to
do is find a solution mod p and let Hensel’s lemma do the rest!

It’s important to understand this proof, since then you can mimic the argument
to do some actual computations. We’ll just do the simple case when j = 1. In
general, the argument is the same.
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Proof. - Assume a is a soln mod p.
- Write out Taylor series for f(a + tp), then reduce it mod p2.
- Prove that all terms except the first two drop out. Reason: f (k)(a)/k! is an

integer for each 1 < k ≤ n.
- So now we have

f(a + tp) ≡ f(a) + tpf ′(a) mod p2

and we set this congruent to zero and try to solve for t.
- f(a) ≡ 0 mod p implies p|f(a)
- So divide the congruence (and the modulus!) by p.
- Get

f(a)

p
+ tf ′(a) ≡ 0 mod p

- f ′(a) 6= 0, so it’s a unit. Write its inverse f ′(a)−1 (this is a number mod p).
- Put this back into our original set-up. The root a2 mod p2 which we wanted

has the form

a2 = a + tp = a− f(a)f ′(a)−1

In general, we will start with a root a1 = a (I use the subscript 1 for consistency
of notation). This gives a root a2 = a1 − f(a1)f ′(a)−1 mod p2, this gives a root
a3 = a2 − f(a2)f ′(a)−1, etc. The recursive formula for the root an mod pn is

an = an−1 − f(an−1)f ′(a)−1

Notice that the term f ′(a)−1 is always the same. �

2. Algebraic Interpretation

Recall that there is a homomorphism Z/p2 → Z/p, given by reducing mod p.
For example, if p = 2, we can consider Z/4 → Z/2. It sends 0 to 0, 1 to 1, 2 to 0,
and 3 to 1.

Similarly, there are maps Z/pj → Z/pj−1 for each j > 1. So we have a chain of
homomorphisms

...
Z/p3
↓

Z/p2
↓

Z/p
If we look at an element a ∈ Z/p, we can ask how many things in Z/p2 get

sent to a under this map? In other words, how many preimages does it have? The
answer is p. If we have an element b in Z/p2 which reduces to a mod p, we say b
lies above a - that’s the reason I wrote the maps vertically. Some people also say
that we can lift a to b.

Some more terminology: Let a be a root of f mod pj , i.e., f(a) ≡ 0 mod pj . We
call a a nonsingular root if f ′(a) 6≡ 0 mod p (note the modulus for the derivative
is p, but the modulus for the root may be a higher power of p). Otherwise it’s
called a singular root.

Now we can state Hensel’s lemma concisely:

Theorem 2 (Hensel’s Lemma, Concise Version). Nonsingular roots lift uniquely.
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3. Using Hensel

Example 3.1. Find all solutions to the congruence 5x3 + x2 − 1 ≡ 0 mod 125.

(1) Note that 125 = 53 is a prime power, and that the cubic term drops out
mod 5 (good news!)

(2) Solve it mod 5 - two roots, 1 and 4
(3) Check for nonsingulartiy. f ′(x) = 2x mod 5, so both are nonsingular.
(4) lift the first root, a = 1. The first step is to find the inverse to f ′(a) mod

5. For a = 1, f ′(a) = 2, whose inverse mod 5 is 3. We call the root a mod
5 a1, which is considered mod 5, and first lift to a2, a number mod 52:

a2 = a1 − f(a1)f ′(a)−1 = 1− 5 · 3 = −14 ≡ 11 mod 25

We lift again:

a3 = a2−f(a2)f ′(a)−1 = 11−(5·1331+121−1)·3 = 11−6775·3 = −20314 mod 125

This number is very large, but we can replace it by something smaller mod
125 by using long division: −20314 = −162·125−64 ≡ −64 ≡ 61 mod 125,
so our desired root mod 125 is 61.


