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1. INTRODUCTION

Number theory is the study of integers. Mostly we care about positive integers,
but it’s usually convenient to work with the negative integers too. Some of the
main problems of number theory are incredibly old, but have eluded many of the
best mathematicians for centuries. Often these problems sound simple enough that
they can be explained to a child, yet their solutions involve incredibly advanced
techniques drawn from all areas of mathematics. To give you a feeling for the
subject, here are some typical questions a number theorist might ask:

(1) How many prime numbers are there?

(2) Find all positive integer solutions x,y,z to the equation z? + y? = z
(Pythagorean triples).

(3) Find all positive integer solutions z,y,z to the equation 2™ 4+ y™ = 2",
where n is greater than 2 (Fermat’s Last Theorem).

(4) Can every even integer be written as the sum of two primes? (Goldbach
Conjecture)

(5) Can every positive integer be written as the sum of two squares? (Fermat)

(6) Are there infinitely many pairs of primes spaced two units apart? (Twin
Prime Conjecture)
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The first is easy, the second only slightly less easy. The third is very hard - it
took 358 years to solve. The fourth is still unsolved, despite being first asked in
1742. For a little while, you could get a million dollars if you solved it, but I think
the offer is no longer available. We’ll be able to solve the fifth by early next week.
We won’t get a million dollars for it, though. The sixth is also still unknown. I'm
not sure how much money you’d get if you solved it, but I'd give you an A+ in the
class.

2. DIVISIBILITY AND DIVISION ALGORITHM

As mentioned above, the integers have two primary operations - addition and
subtraction. Much of the subtlety in studying number theory concerns the in-
teraction of these two operations. However, in this section we focus on only the
multiplicative aspect. In many ways this is a more complicated operation. Under
addition, we can obtain every integer by adding and subtracting a bunch of copies
of 1. We say that the integer 1 generates Z as an additive group.

By contrast, there is no one number with which we can build up all others by
multiplying many copies. Actually, what we need in order to build all the numbers
by multiplication are the primes (and -1, to get the negative integers). Even then
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we cannot get zero. So you see that multiplication in integers is a more complicated
matter than addition. To study it, we introduce the notion of divisibility, which is
a relationship between two integers.

Definition 1. If a and b are two integers, with a # 0, then a divides b if there
is another integer k such that b = ka. We write this as alb, and also say a is a
factor, or divisor, of b, or b is divisible by a. If a does not divide b, we write

a fb.

Example 2.1. 3 and -4 both divide -12, but 5 does not. 0 doesn’t divide anything,
by our definition, not even zero, even though 0 = k0 for any k. On the other hand,
every integer except zero divides zero, since we can always take k£ = 0.

Basic properties of divisibility:
(1) If a|b then albc for any c.
(2) “If a divides b and b divides ¢, then a divides ¢” - we can express this by
saying that the divisibility relation is transitive.
(3) If a divides both b and ¢, then a divides any Z-linear combination of b and
¢, i.e., albx + cy for any integers x and y.
(4) If a divides b and b also divides a, then a and b are equal up to plus or
minus, i.e, a = +b.
(5) For positive integers a.b, if alb, then a < b.
As you know from your early years, we may attempt to divide b by a, even when
a is not a divisor of b, but then we will get a remainder, which is less than b. The
fact that this always works is the next theorem - it’s a key tool for the rest of this
course.

Theorem 1 (Division Algorithm). For any integers a and b, with a positive, there
exists a unique quotient ¢ and remainder r, where 0 < r < a such that

b=aq+r.
Moreover, this v is zero if and only if alb.

You already know how to produce q and r - long division. What you may want
to prove is that 0 < r < a, and the uniqueness. The idea is that r is the smallest
non-negative member of the infinite sequence

b+ ka,

where k runs through all integers. Then r > 0 by our choice, and it’s smaller than
a since the numbers are spaced a units apart. Uniqueness is proved by supposing
there are two pairs q1,71 and g¢2,72 that make the equality true, then using the
inequalities of r{,72 to conclude that r; = ro, and hence q; = ¢, too. This is
a common trick - the inequalities on 7 are perhaps the most useful part of the
theorem.

3. IDEALS AND THE GCD
— NOTE: this section contains material not covered in the book —

Definition 2. If a|b and alc, then a is a common divisor of b and ¢. If b and ¢
are not both zero, the greatest common divisor (gcd) of b and ¢ is the largest
of these, denoted by (b, ¢).
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The reson for the requirement that b and ¢ not both be zero is that if they’re
both zero, then every nonzero integer is a divisor of both of them, so there is no
greatest.

Here’s an alternate point of view on the ged, not covered in your book, involving
the notion of ideals. You may have seen this in an abstract algebra course - it’s a
very important concept that you will run into in the future anyway, so I'll discuss
it here for a moment.

Definition 3. An ideal in Z is a nonempty subset I with the following two prop-
erties:

(1) If a,b € I, then a + b € I (closed under addition)
(2) If a € Z and i € I, then ai € I (closed under “scalar multiplication”)

The properties are similar to those of a subspace of a vector space. Note that the
second condition is stronger than “closure under multiplication” - here we take an
element ¢ in our ideal, and we are allowed to multiply it by not just something else
in I, but anything in Z, and the result still lands in I. I remember being confused
about this when I first saw ideals. Note also that an ideal must always contain zero
(just like subspaces) - this gives an easy way to see that some things aren’t ideals,
if they don’t contain zero.

Examples 3.1. (1) The set of all integers Z is itself an ideal.

(2) The subset {0} is an ideal, which we denote by (0).

(3) Every other ideal contains infinitely many elements. Reason: if I is an ideal
and a is a nonzero element in I, then we can keep adding a to itself and
stay in I, by property 1. This gives infinitely many elements.

(4) If a is any integer, then the set {ka |k € Z} of multiples of a is an ideal,
denoted by (a). Note examples 1 and 2 are just special cases of this, when
a =1 or 0, respectively. An ideal of this form is called principal, and «a is
called a generator for the ideal.

(5) If a and b are two integers, the set of all Z-linear combinations {ax +
by |z,y € Z} is an ideal.

(6) There are ideals in other settings, too: the set of all (real, complex, what-
ever) polynomials p(z) such that p(1) = 0 forms an ideal in the set (ring)
of all polynomials.

Our main theorem here is that actually every ideal in Z is principal! This is
something very special about the integers - it’s not always true for ideals in other
situations.

Theorem 2. FEvery ideal in Z is principal, i.e., for any ideal I C Z, there is an
integer a, unique up to £, such that I = (a).

Proof. Out of all the elements in I, pick the smallest positive one! and call it a.
We’ll show that a is a “generator”, namely I = (a). This means we have to show
that everything in [ is a multiple of this a, or in other words, that a is a divisor of
everything in I. So pick any b € I. To show a is a divisor, we can just show that
the remainder when you divide b by a is 0. Applying the division algorithm to a
and b gives some ¢ and r such that

b=qga+r, orr=b—qa

11f there is no positive element, then there is no negative element either, so I = (0), which is
principal.
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with 0 <7 < a. But aisin I, so —qa is also in I, and since b is also in I, b — qa is
in I. Thus by the properties of ideals we’ve found that the remainder r is in I. But
then r can’t be positive, since it’s smaller than a, and we chose a to be the smallest
positive thing in I. So that means that r must be zero, which means b = ga, so alb.
This shows that every element b in I is a multiple of a, so I = (a).

O

Notice that this proof used the inequalities 0 < r < a - this is the key fact when
you’re applying the division algorithm!



