MATH 115
 SUMMER 2012
 PRACTICE FOR FINAL EXAM

JAMES MCIVOR

(1) Prove, without using the Pythagorean triples theorem, that if x, y, z are integers whose gcd is one, satisfying $x^{2}+y^{2}=z^{2}$, then z must be odd.
(2) Find all positive integers n such that $10 \mid n^{10}+1$.
(3) By using the chinese remainder theorem, or by any other method, find all solutions to the congruence

$$
x^{5} \equiv 5 \quad \bmod 12
$$

(4) If $g^{4} \equiv-1 \bmod 17$, explain why g cannot be a primitive root mod 17 .
(5) Describe all pairs of relatively prime integers a, b such that $6 a b$ is a perfect square.
(6) Determine whether the following two congruences have solutions:
(a) $x^{2} \equiv 12 \bmod 37$
(b) $x^{2} \equiv 80 \bmod 33$
(7) Consider the following sequence of quadratic forms:

$$
\begin{aligned}
f_{0}(x, y) & =x^{2}+y^{2} \\
f_{1}(x, y) & =x^{2}-2 x y+2 y^{2} \\
f_{2}(x, y) & =x^{2}-4 x y+5 y^{2} \\
& \vdots \\
f_{k}(x, y) & =x^{2}-2 k x y+\left(k^{2}+1\right) y^{2}
\end{aligned}
$$

(a) Show that all the f_{k} represent the same integers.
(b) Given that $f_{0}(a, b)=n$, find integers x, y (which possibly depend on any of a, b, n, and $k)$ such that $f_{k}(x, y)=n$.

