MATH 115, SUMMER 2012
 MOCK QUIZ, LECTURE 9

JAMES MCIVOR

Pretend this is a real quiz and take. It's not for a grade, though. First look for the ones you already know how to do. We'll go over it at the end, but use it as a guide to see what you should study most for tomorrow's (real) quiz.
(1) (CRT problem)

Solve the system of congruences, if possible. If not possible, explain why not.

$$
\begin{aligned}
& x \equiv 13 \quad \bmod 20 \\
& x \equiv 3 \quad \bmod 15 \\
& x \equiv 9 \quad \bmod 12
\end{aligned}
$$

(2) (Solving one linear congruence)

Find all integers x satisfying the congruence

$$
12 x \equiv 16 \bmod 20
$$

Then give an integer b for which the congruence $12 x \equiv b \bmod 20$ has no solution, and say briefly why not.
(3) (Algebra Questions)
(a) Give an example of a ring, and an element of this ring which is neither a unit nor a zerodivisor.
(b) Explain why there are no ring homomorphisms from $\mathbb{Z} / 2$ to \mathbb{Z} / m, for any $m>2$.
(c) Compute $(2,4)+(1,3)$ and $(2,4) \cdot(1,3)$ in the $\operatorname{ring} \mathbb{Z} / 3 \times \mathbb{Z} / 5$.
(d) The Chinese Remainder Theorem says that there is an isomorphism ϕ from $\mathbb{Z} / 3 \times \mathbb{Z} / 5$ to $\mathbb{Z} / 15$. What is $\phi(2,3)$?
(4) Suppose $p>2$ is a prime that divides $26^{2}+64^{2}=4672$. What is the remainder when p is divided by 4 ?

