MATH 115, SUMMER 2012 MOCK QUIZ, LECTURE 9

JAMES MCIVOR

Pretend this is a real quiz and take. It's not for a grade, though. First look for the ones you already know how to do. We'll go over it at the end, but use it as a guide to see what you should study most for tomorrow's (real) quiz.

(1) (CRT problem)

Solve the system of congruences, if possible. If not possible, explain why not.

 $x \equiv 13 \mod 20$ $x \equiv 3 \mod 15$

 $x \equiv 9 \mod 12$

(2) (Solving one linear congruence)

Find all integers x satisfying the congruence

$$12x \equiv 16 \mod 20$$
.

Then give an integer b for which the congruence $12x \equiv b \mod 20$ has no solution, and say briefly why not.

- (3) (Algebra Questions)
 - (a) Give an example of a ring, and an element of this ring which is neither a unit nor a zerodivisor.
 - (b) Explain why there are no ring homomorphisms from $\mathbb{Z}/2$ to \mathbb{Z}/m , for any m > 2.
 - (c) Compute (2,4) + (1,3) and $(2,4) \cdot (1,3)$ in the ring $\mathbb{Z}/3 \times \mathbb{Z}/5$.
 - (d) The Chinese Remainder Theorem says that there is an isomorphism ϕ from $\mathbb{Z}/3 \times \mathbb{Z}/5$ to $\mathbb{Z}/15$. What is $\phi(2,3)$?
- (4) Suppose p > 2 is a prime that divides $26^2 + 64^2 = 4672$. What is the remainder when p is divided by 4?