MATH 115, SUMMER 2012 WS FOR LECTURE 7,8

JAMES MCIVOR

1. Computations

(1) Solve or say why there is no solution:
(a) $16 x \equiv 3 \bmod 124$
(b) $24 x \equiv 4 \bmod 23$
(2) Solve the system of congruences

$$
\begin{array}{ll}
x \equiv 4 & \bmod 95 \\
x \equiv 7 & \bmod 9 \\
x \equiv 1 & \bmod 4
\end{array}
$$

2. Ring Problems

(1) Is the set

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
4 b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

a ring?
(2) Recall that a unit in a ring R is an element r for which there is another element r^{\prime} such that $r r^{\prime}=r^{\prime} r=1$. Prove that if $f: R \rightarrow S$ is a ring homomorphism and $r \in R$ is a unit, then $f(r)$ is a unit in S. Use this to give another proof that $\phi(m n)=\phi(m) \phi(n)$ if $(m, n)=1$. [Note: you need the notion of an isomorphism to explain this succinctly, which we didn't get to in lecture]
(3) Suppose m, n are two integers greater than 1 and that there is a ring homomorphism $f: \mathbb{Z} / m \rightarrow \mathbb{Z} / n$. What can be said about the relationship between m and n ?

3. Harder Problems

(1) (NZM 2.3.34) Prove that there is no positive integer n for which $\phi(n)=14$. [Hint: First prove the following fact: if $p \mid n$, then $\phi(p) \mid \phi(n)$]
(2) (NZM 2.3.42) Find all positive integers n for which $\phi(n) \mid n$.

