MATH 115, SUMMER 2012 WS FOR LECTURE 5,6

JAMES MCIVOR

(1) Find all solutions to the following congruences:
(a) $2 x \equiv 1 \bmod 3$
(b) $9 x+23 \equiv 28 \bmod 25$
(2) Prove that $23 \mid a^{154}-1$ whenever $(a, 23)=1$.
(3) (slightly harder) If p is a prime such that $\frac{p-1}{2} \equiv 3 \bmod 4$, show that $1 \cdot 2 \cdots\left(\frac{p-1}{2}\right) \equiv \pm 1 \bmod p$. [Possible hint: use tricks similar to those in the proof of the $x^{2} \equiv-1$ Thm]
(4) Prove that $\frac{1}{5} n^{5}+\frac{1}{3} n^{3}+\frac{7}{5}$ is an integer, for all $n \in \mathbb{Z}$.
(5) Prove that $n^{13}-n$ is divisible by 5 for any n. Is it divisible by any other numbers for all n ?
(6) (Harder) Let p be prime. Show that $a^{p} \equiv b^{p} \bmod p$ implies $a^{p} \equiv b^{p}$ $\bmod p^{2}$.

