MATH 115, SUMMER 2012 WS FOR LECTURE 5,6

JAMES MCIVOR

- (1) Find all solutions to the following congruences:
 - (a) $2x \equiv 1 \mod 3$
- (a) 2x ≡ 1 mod 3
 (b) 9x + 23 ≡ 28 mod 25
 (2) Prove that 23|a¹⁵⁴ 1 whenever (a, 23) = 1.
 (3) (slightly harder) If p is a prime such that ^{p-1}/₂ ≡ 3 mod 4, show that 1 · 2 · · · (^{p-1}/₂) ≡ ±1 mod p. [Possible hint: use tricks similar to those in the proof of the x² ≡ -1 Thm]
 (4) Prove that ½π⁵ + ⅓π³ + ½π is an integer, for all n ∈ Z.
 (5) Prove that n¹³ n is divisible by 5 for any n. Is it divisible by any other numbers for all n?
- numbers for all n?
- (6) (Harder) Let p be prime. Show that $a^p \equiv b^p \mod p$ implies $a^p \equiv b^p$ $\mod p^2$.