MATH 115, SUMMER 2012 WORKSHEET FOR LECTURE 26

JAMES MCIVOR

1. Basic Stuff

Mark the following as true or false.
(1) If C is a plane curve, every line in the plane intersects C. False
(2) Every curve contains rational points. False
(3) A point is a curve. True: consider the equation $x^{2}+y^{2}=0$, which defines the curve containing only the origin.
(4) The union of three vertical lines is a curve. True: say the three lines are $x=-1,0,1$, then the equation defining this curve is $x(x-1)(x+1)=0$.
(5) The equation $5 x^{2}+4 y^{2}=2$ has solutions in integers. False: look at it mod 4 or 5 to get a contradiction.

2. What do derivatives tell us about curves?

Here we investigate the notion of a singularity, which is very important in studying curves.

Draw a picture of the following curves:
(1) $f_{1}(x, y)=x^{2}-y^{2}=0$.
(2) $f_{2}(x, y)=y^{2}-x^{3}=0$.
(3) $f_{3}(x, y) x^{4}-x^{2}-y^{2}=0$ (this one is a "figure eight" or "infinity" shape, it may be harder to tell that from the equation)
What do (1) and (3) have in common geometrically? Compute the partial derivatives

$$
\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{1}}{\partial y}, \frac{\partial f_{3}}{\partial x}, \frac{\partial f_{3}}{\partial y}
$$

at the origin. What do you notice?
Now compute the partials $\frac{\partial f_{2}}{\partial x}, \frac{\partial f_{2}}{\partial y}$ at the origin. Even though the picture for f_{2} looks qualitatively different than the other two at the origin, can you think of a reason why the behavior of the partials of all three at the origin are the same?

In the problem session, we defined a singularity as a point on a curve C_{f} where both the partials of f are zero. All three curves above have singularities at the origin. Curves (1) and (3) have singularities where the curve crosses itself. Curve (2) has a singularity which is a "cusp", or sharp point.

