MATH 115, SUMMER 2012 WORKSHEET FOR LECTURE 21

JAMES MCIVOR

(1) Using the algorithm given in the example from the end of lecture, find a reduced form equivalent to $f(x, y)=458 x^{2}+214 x y+25 y^{2}$.
(2) Prove that if a quadratic form $f(x, y)$ represents a prime p, then it represents p properly.
(3) Let $f(x, y)=x^{2}$. What's wrong with the following argument? Since $x^{2} \geq 0$ for all x, and $x^{2}=0$ if and only if $x=0, f$ is a positive definite form.
(4) Let $f_{D}=x^{2}+D y^{2}$. Prove that if m and n are represented by f_{D}, then so is $m n$. Thus for these quadratic forms, at least, it suffices to determine which primes they represent.
(5) Let $f(x, y)=x^{2}-y^{2}$. Find all integer matrices A such that

$$
f(\mathbf{x})=f(A \mathbf{x})
$$

for all $(x, y) \in \mathbb{Z}^{2}$. Matrices with this property are called automorphs of f.

