MATH 115, SUMMER 2012 WORKSHEET FOR LECTURE 20

JAMES MCIVOR

"Form" on this worksheet always means integral binary quadratic form.
(1) Let $f(x, y)=a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$. Let g be the gcd of a, b, c. Let S be the set of integers represented by f. Prove that only multiples of g can be in S^{1}. Is S an ideal? If yes, say why. If no, provide a counterexample by writing down some particular form.
(2) Let f be the form $f(x, y)=x^{2}+5 y^{2}$. Find all positive integers less than 200 that can be represented by f^{2}. Which of them can be properly represented? Which primes are represented? Can you make a guess in general as to which primes can be represented by this form ${ }^{3}$? We'll be able to prove the answer to this in a few days!

It may help you to use the following list of primes <200 :
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103$,
$107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199$
(3) In this problem, the vector symbol \mathbf{x} always means the column vector $\mathbf{x}=$ $\binom{x}{y}$, with $x, y \in \mathbb{Z}$.
(a) If A is any real $n \times n$ matrix, show that there is a unique symmetric matrix B and skew-symmetric ${ }^{4}$ such that $A=B+C$.
(b) If $f(x, y)$ is a form given by

$$
f(x, y)=\mathbf{x}^{T} A \mathbf{x}
$$

for some 2×2 matrix A, and if $f(x, y)=0$ for all $(x, y) \in \mathbb{Z}^{2}$, show that A is skew-symmetric.
(c) Use parts (a) and (b) to show that any form $f(x, y)$ can be written in terms of a matrix:

$$
f(x, y)=\mathbf{x}^{T} A \mathbf{x}
$$

where A is symmetric.

[^0]
[^0]: ${ }^{1}$ This doesn't say, however, that every multiple of g is in S.
 ${ }^{2}$ Hint: draw a picture of the lattice \mathbb{Z}^{2} in \mathbb{R}^{2}. Next to each lattice point, write the value of f at that point. This may speed up your computations.
 ${ }^{3}$ Hint: how do they relate to multiples of 20 ?
 ${ }^{4} B$ is symmetric means $B=B^{T}$, the transpose of B. C is skew-symmetric means $C=-C^{T}$.

