MATH 115, SUMMER 2012 TUESDAY, JUNE 19TH WORKSHEET

JAMES MCIVOR

- (1) Which of the following subsets of \mathbb{Z} are ideals? Why or why not?
 - (a) The set of all prime numbers.
 - (b) The set of all integer solutions x to the equation 2x + 12 = 0
 - (c) The set of all integers y such that there is an integer x with y = 4x 2.
 - (d) The set of integers of the form 3k + 1.
- (2) Let I_1 be the ideal generated by 5, and I_2 the ideal generated by 6. Describe the set of integers which are in both I_1 and I_2 . Is it an ideal?
- (3) (quiz 1 question!) Find the gcd of 542 and 78, and express it as a linear combination of these two numbers. No calculators allowed!
- (4) (quiz 1 question!) Explain why there are no integers x and y such that

$$112x + 320y = 24$$

(5) (quiz 1 question!) Find integers x and y such that

$$318x - 96y = -12$$

- (6) (NZM 1.2.7) Exhibit three integers that are relatively prime but not relatively prime in pairs.
- (7) (NZM 1.2.14) Prove that if n is odd, $n^2 1$ is divisible by 8.
- (8) (NZM 1.2.34) Prove that for all integers a, k not both zero, (a, a + k)|k. Write one proof using the language of ideals, and one without (they should be very similar)
- (9) (Harder NZM 1.2.50) Show that if a and b are relatively prime, then $(a+b,a^2-ab+b^2)$ must be either 1 or 3.