MATH 115, SUMMER 2012 TUESDAY, JUNE 19TH WORKSHEET

JAMES MCIVOR

(1) Which of the following subsets of \mathbb{Z} are ideals? Why or why not?
(a) The set of all prime numbers.
(b) The set of all integer solutions x to the equation $2 x+12=0$
(c) The set of all integers y such that there is an integer x with $y=4 x-2$.
(d) The set of integers of the form $3 k+1$.
(2) Let I_{1} be the ideal generated by 5 , and I_{2} the ideal generated by 6 . Describe the set of integers which are in both I_{1} and I_{2}. Is it an ideal?
(3) (quiz 1 question!) Find the gcd of 542 and 78 , and express it as a linear combination of these two numbers. No calculators allowed!
(4) (quiz 1 question!) Explain why there are no integers x and y such that

$$
112 x+320 y=24
$$

(5) (quiz 1 question!) Find integers x and y such that

$$
318 x-96 y=-12
$$

(6) (NZM 1.2.7) Exhibit three integers that are relatively prime but not relatively prime in pairs.
(7) (NZM 1.2.14) Prove that if n is odd, $n^{2}-1$ is divisible by 8 .
(8) (NZM 1.2.34) Prove that for all integers a, k not both zero, $(a, a+k) \mid k$. Write one proof using the language of ideals, and one without (they should be very similar)
(9) (Harder - NZM 1.2.50) Show that if a and b are relatively prime, then $\left(a+b, a^{2}-a b+b^{2}\right)$ must be either 1 or 3 .

