MATH 115, SUMMER 2012 WORKSHEET FOR LECTURE 14

JAMES MCIVOR

(1) (8 points) Find all solutions to the congruence $x^{2}-4 x+23 \equiv 0 \bmod 125$.

Solution: Working mod 5 , we get the solutions $x=1, x=3$. These are both nonsingular, since $f^{\prime}(x)=2 x-4$, so $f^{\prime}(1)=-2, f^{\prime}(3)=2$, and both are nonzero $\bmod 5$.

Now let $a=1$. $f^{\prime}(a)^{-1}=2$, so

$$
\begin{aligned}
& a_{2}=1-f(1) \cdot 2=1-40=-39 \equiv 11 \quad \bmod 25 \\
& a_{3}=11-f(11) \cdot 2=11-100 \cdot 2 \equiv 61 \quad \bmod 125
\end{aligned}
$$

Next let $a=3$; then $f^{\prime}(3)^{-1}=3$, so
$a_{2}=3-f(3) \cdot 3=3-20 \cdot 3=-57 \equiv-7 \bmod 25$
$a_{3}=-7-f(-7) \cdot 3=-7-100 \cdot 3=-307 \equiv-57 \equiv 68 \bmod 125$

Thus the two solutions mod 125 are 61 and 68.
(2) (3 points) Let a be a unit in the ring $\mathbb{Z} / 14$. What are all the possible values of the order of a ?

Solution: Any unit has an order that divides $\phi(14)=6$, so the possible orders are $1,2,3,6$.
(3) (2 points) Let $m>1$. Suppose that $m-1$ is a primtive root $\bmod m$. What are the possible values of m ?

Solution: Since $m-1 \equiv-1 \bmod m$, and $m-1$ is a primitive root, the set of powers of $m-1$, which is congruent to the set $\{-1,1\}$, forms a reduced residue system. If $m=2$, then $1=-1$, so this set has size one, hence $m=2$. Otherwise $\phi(m)=2$. What numbers m have $\phi(m)=2$? If $m>2$ is prime, $\phi(m)=m-1=2$ implies $m=3$. If m is composite, its only prime factors can be 2 or 3 , by the multiplicative property of ϕ. Thus $m=2^{\alpha} 3^{\beta}$.
(4) (2 points) Find the order of the element 2 in $\mathbb{Z} / 19$.

Solution: The possile orders are divisors of $\phi(19)=18$, namely $1,2,3,6,9,18$. We just need to compute 2 to each of these powers, and not the first time we get $1 \bmod 19$. First we compute some powers of $2 \bmod$ 19:

$$
2^{0}=1,2^{1}=2,2^{2}=4,2^{4}=16,2^{8} \equiv 9 \quad \bmod 19
$$

We can use just these to compute the other powers of 2 we're interested in: $2^{3}=2^{2} \cdot 2^{1}=4 \cdot 2=8,2^{6}=\left(2^{3}\right)^{2}=8^{2}=64 \equiv 7,2^{9}=2^{8} \cdot 2 \equiv 9 \cdot 2=18=-1$

Once we see -1 in this list, we're done - since $2^{9} \equiv-1,2^{1} 8 \equiv 1$. Of course, since none of the powers $1,2,3,6,9$ worked, the only one left was 18 anyway. So 2 is actually a primitive root $\bmod 19$.

Quadratic Residues Practice:

(1) Determine whether 3 is a QR or a QNR mod p for the following values of $p: 11,13,17,19$.

We don't have any tricks (yet) to deal with large primes, so it's most efficient to first make a list of the squares up to 18^{2} :
$0,1,2,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324$.
Now subtract 3 from each:
$-3,-2,1,6,13,22,33,46,61,78,97,118,141,166,193,222,253,286,321$
Now we just reduce these mod $11,13,17,19$ and see whether we get any zeroes.
$-\bmod 11$, we see $22 \equiv 0$, so 3 is a $\mathrm{QR} \bmod 11$.
$-\bmod 13,78 \equiv 0$, so 3 is a $\mathrm{QR} \bmod 13$
$-\bmod 17$, none of these are zero, so 3 is a QNR mod 17
$-\bmod 19$, none of these are zero, so 3 is a QNR mod 19
(2) Evaluate the following Legendre symbols:
(a) $\left(\frac{2}{5}\right)=-1$
(b) $\left(\frac{3}{5}\right)=-1$
(c) $\left(\frac{6}{5}\right)=\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)=(-1)(-1)=1$
(d) $\left(\frac{432}{5}\right)=\left(\frac{2}{5}\right)=-1$
(e) $\left(\frac{80}{5}\right)=0$ since $5 \mid 80$.
(f) $\left(\frac{-1}{19}\right)=-1$ since $19 \equiv 3 \bmod 4$.
(g) $\left(\frac{4}{7}\right)=1$ (four is always a quadratic residue \bmod any $p>3$).
(h) $\left(\frac{8}{3}\right)=\left(\frac{2}{3}\right)=-1$.
(3) Prove the "other useful properties of the Legendre symbol" listed in lecture following the key fact: $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p$.

Solution: For example, to see that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, just compute

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{\frac{p-1}{2}}=a^{\frac{p-1}{2}} b^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

and since this number can only be ± 1, and $p>2$, congruence $\bmod p$ implies equality.

