MATH 115, SUMMER 2012 HOMEWORK 6 DUE TUESDAY, AUGUST 7TH

JAMES MCIVOR
(1) Show that the equation $12 x^{2}+13 y^{2}=227$ has no solutions in integers.
(2) Show that the curve $17 x^{2}+24 y^{2}=221 z^{2}$ contains no rational points besides $(0,0,0)$.
(3) Consider the projective plane curve given by the equation $4 x^{2}+y^{2}=z^{2}$. Draw pictures of this curve in the three subsets U_{0}, U_{1}, U_{2} of \mathbb{P}^{2} where x, y, and z, respectively, are nonzero.
(4) Consider the curve C given in the $x y$-plane by the equation $f(x, y)=$ $y-x^{2}=0$. Let L be the line in the $x y$-plane $x=0$. The line L intersects C in only one point in the $x y$-plane, and it is not tangent to C, either.

In this problem, we show that L and C actually meet in two points if we regard both in the projective plane. So now let C be the projective plane curve given by the homogeneous equation $y z-x^{2}=0$, and let L as before be defined by the equation $x=0$. By considering separately the cases $x=1, y=1$, and $z=1$, find the two intersection points of C and L in \mathbb{P}^{2}.
(5) Prove the assertion made in class that \mathbb{P}^{2} can be written as

$$
\mathbb{P}^{2}=\mathbb{R}^{2} \cup \mathbb{R} \cup\{\text { point }\}
$$

Be sure to specify which point it is on the right hand side (it may depend on your choice of decomposition into \mathbb{R}^{2} and \mathbb{R}).
[Hint: First consider those points $[x: y: z]$ where $z \neq 0$. Show that this set of points is in bijection wih \mathbb{R}^{2}. Now consider the set of points $[x: y: 0]$.]
(6) For this problem, we need the following definition:

Definition 1. If C is a projective plane curve given by a homogeneous polynomial equation $F(x, y, z)=0$, then we say that the point $[a: b: c]$ is a singular point of C if $F(a, b, c)=0$ (i.e., the point lies on C) and also all partial derivatives of F vanish at $[a: b: c]$, i.e.,

$$
\frac{\partial F}{\partial x}(a, b, c)=\frac{\partial F}{\partial y}(a, b, c)=\frac{\partial F}{\partial z}(a, b, c)=0
$$

If C has no singular points, then we say C is nonsingular

Now consider the curve C given by the equation

$$
F(x, y, z)=y^{2} z-x^{3}+a x^{2} z+b z^{3} .
$$

Show that C is nonsingular if $\Delta \neq 0$, where

$$
\Delta=16\left(4 a^{3}-27 b^{2}\right)
$$

[Hint: Assume $P=[x: y: z]$ is a singular point of C, and show that this forces $\Delta=0$.]

