
MATH 115, SUMMER 2012

HOMEWORK 5

SOLUTION

JAMES MCIVOR

(1) (NZM 3.5.1) Find a reduced form equivalent to 7x2 + 25xy + 23y2.

Solution: By applying step 2 with k = 2, and then step 1, we obtain
the reduced form x2 + 3xy + 7y2.

(2) (NZM 3.5.4) Show that a binary quadratic form f properly represents an
integer n if and only if there is a form equivalent to f in which the coeffi-
cient of x2 is n.

Solution: First assume f is equivalent to a form g(x, y) = nx2 + kxy+
my2 for some k,m. Then g(1, 0) = n and this representation is proper since
the gcd of 0 and 1 is 1. This means that f also represents n properly since
equivalent forms properly represent the same integers.

For the other direction, suppose f properly represents n. Then there
are coprime integers s, t such that f(s, t) = n. Since s and t are coprime,
there exist integers α, β such that αs + βy = 1. Now consider the ma-

trix

(
s −β
t α

)
. It has determinant one, so it’s in the moidular group.

Therefore f(x, y) = ax2 + bxy + cy2 is equivalent to the form

g(x, y) =
(
x y

)( s t
−β α

)(
a b/2
b/2 c

)(
s −β
t α

)(
x
y

)
=
(
x y

)( s t
−β α

)(
as+ bt/2 ∗
bs/2 + ct ∗

)(
x
y

)
=
(
x y

)( as2 + bst+ ct2 ∗
∗ ∗

)(
x
y

)
=
(
x y

)( n ∗
∗ ∗

)(
x
y

)
,

where ∗ denotes something I’m too lazy to compute, but which doesn’t
matter anyway, because this equivalent form has x2 coefficient equal to n,
as desired.

(3) Find all reduced positive definite primitive forms of discriminant -7.

Solution: If d = −7, we have 7 = 4ac − b2, so b must be odd. Also
the reduction theorem tells us that |b| ≤ a ≤

√
7/3, so |b| ≤ a ≤ 1. Thus
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|b| = a = 1, and since b > −a, b must be 1. Solving for c in the previous
equation gives c = 2. This gives two reduced forms x2 ± xy + 2y2.

(4) Find all reduced positive definite primitive forms of discriminant -8.

Solution: We have 8 = 4ac− b2 so b is even. By the reduction theorem,
|b| ≤ a ≤ 1, so |b| = 0. Thus 4ac = 8, so a = 1, c = 2, giving the reduced
form x2 + 2y2.

(5) Find all reduced positive definite primitive forms of discriminant -27.

Solution: We have 27 = 4ac − b2, so b is odd, and |b| ≤ a ≤ 3 by the
reduction theorem. If |b| = a = 3, then 36 = 12c, so c = 3 also, so this form
is not primitive. Thus |b| must be 1, hence 28 = 4ac so one of a or c is 1,
the other is 7. To be reduced, we must have a ≤ c, so a = 1, c = 7. Since
b > −a, b must be positive 1, giving the form x2 + xy + 7y2.

(6) Determine which prime numbers are represented by the form 2x2 + 3y2.

Solution: Call this form f . Its discriminant is -24. First we determine
whether there are any other reduced primitive forms of discriminant −24.
For this we would have 24 = 4ac− b2, so b is even; also |b| ≤ a ≤ 2 by the
reduction theorem. If |b| = 2, then a = 2 also and we get 28 = 4ac = 8c,
which is impossible. Thus b = 0, so 24 = 4ac, hence 6 = ac. Since we
must have a ≤ c and a ≤ 2, the only possibilities are a = 2, c = 3 and
a = 1, c = 6. Thus there are two reduced forms of discriminant -24, namely
f = 2x2 + 3y2 and g = x2 + 6y2.

It’s clear that p = 2 and p = 3 are both represented by f . From now
on, consider p > 3. By our theorem from class (the“p-rep Thm”), we know
that a prime p is represented by one of these forms if and only if -24 is a
square mod p. We compute the Legendre symbol(

−24

p

)
=

(
−1

p

)(
2

p

)3(
3

p

)
= (−1)(p−1)/2

(
2

p

)(p
3

)
(−1)(p−1)/2 =

(
2

p

)(p
3

)
Notice we use that p 6= 3 in applying the QRL in the second equality.

The quantity
(

2
p

) (
p
3

)
is one iff either{
p ≡ ±1 mod 8

p ≡ 1 mod 3

or {
p ≡ ±3 mod 8

p ≡ 2 mod 3

We now show that the values of p satisfying the second conditions are
not represented by g, because if p = x2 + 6y2 for some x, y, then reducing
mod 3 gives p ≡ x2, so p ≡ 1 mod 3. Thus all primes p > 3 satisfying the
second conditions are represented by f .

Conversely, we have to show also that any prime p > 3 represented by
f satisfies p ≡ ±3 mod 8 and p ≡ 2 mod 3. The second condition is
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straightforward: if p = 2x2 + 3y2, then reducing mod p gives p ≡ 2x2, and
x2 must be one, since 0,1 are the only squares mod 3 and x 6= 0 or else p
would be a multiple of 3. For the mod 8 condition, if p = 2x2 + 3y2, then
y must be odd, say y = 2m+ 1. If x is even, say x = 2k, then

p = 8k2 + 12m2 + 12m+ 3 ≡ 12m(m+ 1) + 3 ≡ 3 mod 8,

since m(m+ 1) must be even. If x is odd, say x = 2k + 1, then

p = 8k2 + 8k + 2 + 12m2 + 12m+ 3 ≡ 12m(m+ 1) + 5 ≡ −3 mod 8,

using again that m(m + 1) is even. Thus we’ve proved that the primes
represented by f are p = 2, 3, and those primes p > 3 such that p ≡ ±3
mod 8 and p ≡ 2 mod 3.

(7) Determine which prime numbers are represented by the form x2 + 7y2.

Solution: Call this form f . Its discriminant is -28. First we see whether
there are other primitive reduced forms of discriminant -18. Such forms
must have 28 = 4ac − b2 so b must be even, and |b| ≤ a ≤

√
28/3, so

|b| ≤ a ≤ 3. We cannot have |b| = 2, because then a ≥ 2, and 32 = 4ac, so
a, c are also divisible by 2 and this is not primitive. So b = 0, hence 7 = 4ac,
so a = 1 and c = 7, and the only primitive reduced form of discriminant
-28 is our f .

It’s clear that 7 is represented by f , and 2, 3, 5 are not, so from now on
consider an odd prime p > 7 (this is to make sure we can use quadratic
reciprocity). Such a prime p is represented by f iff

1 =

(
−28

p

)
=

(
−1

p

)(
2

p

)2(
7

p

)
= (−1)(p−1)/2

(p
7

)
(−1)

p−1
2

7−1
2 =

(p
7

)
This happens iff p is a square mod 7. The quadratic residues mod 7 are
1,2, and 4. So an odd prime p is represented by f iff p = 7 or p ≡ 1, 2, 4
mod 7.

(8) Determine which prime numbers are represented by the form x2 + 8y2.

Solution: Call the form f ; it has discriminant -32. What other primitive
reduced forms have this discriminant? We would have 32 = 4ac − b2 and
|b| ≤ a ≤ 3, and b must be even. If b = 0, then we have ac = 8, and a could
be at most 2, but if so then c = 4 so we don’t get a primitive form. Thus
we get the form a = 1, b = 0, c = 8, which is our f .

On the other hand, if |b| = 2, we have 9 = ac. Since a ≥ |b| = 2, a must
be 3, hance c = 3. Since a = c, b must be positive, and we get the form
g = 3x2 + 2xy + 3y2.

So there are two primitive reduced forms of discriminant -32, namely
f = x2 + 8y2 and g = 3x2 + 2xy + 3y2. A prime p is represented by f or g
iff

1 =

(
−32

p

)
=

(
−1

p

)(
2

p

)5

= (−1)(p−1)/2

(
2

p

)
,
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which happens iff either{
p ≡ 1 mod 4

p ≡ ±1 mod 8

or {
p ≡ 3 mod 4

p ≡ ±3 mod 8

But if p ≡ −1 mod 8, then it can’t be congruent to 1 mod 4, and similarly
if p ≡ −3 mod 8, it can’t be congruent to 3 mod 4, so actually the conditions
are just

p ≡ 1 mod 8 or p ≡ 3 mod 8

So primes represented by f or g must be congruent to 1 or 3 mod 8. We
now show that those congruent to 1 mod 8 are not represented by g. For if

p = 3x2 + 2xy + 3y2,

then x and y have opposite parity, say x even and y odd, so xy is even and
reducing mod 4 gives

p ≡ 3(x2 + y2) mod 4

Now the only squares mod 4 are 0 and 1, depending on whether the integer
is even or odd respectively, so x2 ≡ 0 mod 4 and y2 ≡ 1 mod 4, so the
above shows that if p is represented by g then p ≡ 3 mod 4. Thus p is
represented by f iff p ≡ 1 mod 8.

(9) Prove that if a = 0, the form ax2 + bxy + cy2 is not definite.

Solution: If a = 0, our form looks like bxy+cy2 = (bx+cy)y. By fixing
y = 1 and varying x, we can obtain both positive and negative values, so
the form is indefinite. In particular, it’s not definite.

(10) Prove that if f(x, y) = ax2 + bxy + cy2 is a reduced positive definite form,
then the smallest positive integer represented by f is a.

Solution: Suppose that f represents k, where 0 < k < a. Then
f(x, y) = k for some x, y ∈ Z. We seek a contradiction. If x = 0, then
cy2 = k < a, so a > c, contradicting the fact that f is reduced. If y = 0
then ax2 = k < a, which forces x = 0, but then k = 0, contradiction.
So x and y must both be nonzero. If 0 < |x| ≤ |y|, then since |b| ≤ c,
we have |by| ≤ cy and hence |bxy| ≤ cy2. This means bxy + cy2 ≥ 0, so
ax2 + bxy + cy2 ≥ ax2. Then we get

k = ax2 + bxy + cy2 ≥ ax2 ≥ a,

contradicting the fact that k < a. The final case, when x, y are nonzero
and |x| ≥ |y|, is handled similarly.
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(11) (NZM 5.2.2) For what integers a, b, c does the system

x1 + 2x2 + 3x3 + 4x4 = a

x1 + 4x2 + 9x3 + 16x4 = b

x1 + 8x2 + 27x3 + 64x4 = c

have a solution in integers? What are the solutions if a = b = c = 1?

Solution: We write the system in matrix form:

Ax = b,

where

A =

 1 2 3 4
1 4 9 16
1 8 27 64

 , b =

 a
b
c


By subtracting off copies of the first row, one gets

I3AI4 ∼

 1 0 0
−1 1 0
−1 0 1

 1 2 3 4
0 2 6 12
0 6 24 60




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

By subtracting off copies of the second row, 1 0 0
−1 1 0
2 −3 1

 1 2 3 4
0 2 6 12
0 0 6 24




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Now we subtract off copies of the first column: 1 0 0
−1 1 0
2 −3 1

 1 0 0 0
0 2 6 12
0 0 6 24




1 −2 −3 −4
0 1 0 0
0 0 1 0
0 0 0 1

 .

Finally subtract off copies of the second and third columns: 1 0 0
−1 1 0
2 −3 1

 1 0 0 0
0 2 0 0
0 0 6 0




1 −2 3 −4
0 1 −3 6
0 0 1 −4
0 0 0 1

 .

Now we replace b by c = Lb, where L is the 3×3 matrix on the left above:

c =

 a
b− a

2a− 3b+ c


Since the given system is equivalent to the system Dy = c, where D is

the diagonal matrix in the middle above, we have a solution if and only if
2|b − a and 6|2a − 3b + c. Thus a and b can be any integers of the same
parity, and c ≡ 3b− 2a mod 6.
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In case a = b = c = 1, our solution for y is y1 = 1, y2 = y3 = 0, and
y4 = k is arbitrary. Since x = Ry, where R is the 4× 4 matrix on the right
above, we have

x =


1 −2 3 −4
0 1 −3 6
0 0 1 −4
0 0 0 1




1
0
0
k

 =


1− 4k

6k
−4k
k



(12) (NZM 5.3.2) Prove that if x, y, z is a Pythagorean triple then at least one
of x, y is divisible by 3 and at least one of x, y, z is divisible by 5.

Solution: By Thm 5.5, x, y, z have the form

x = a2 − b2

y = 2ab

z = a2 + b2,

Assume 3 doesn’t divide y. Then 2ab 6≡ 0 mod 3, so ab 6≡ 0 mod 3 since 2
is a unit mod 3. Thus 3 doesn’t divide a or b. But then by Fermat’s Little
Thm a2 − b2 ≡ 1− 1 = 0 mod 3, so 3 |x.

Now assume 5 doesn’t divide y, so it deosn’t divide a or b. Since
xz = a4− b4 ≡ 1− 1 = 0 mod 5 (using Fermat’s Little Thm), 5 divides xz
and since 5 is prime, 5 divides x or 5 divides z.

(13) (NZM 5.3.12) Show that if x, y satisfy x4 − 2y2 = 1, then x = ±1, y = 0.
[Hint: Imitate the proof of the Pythagorean Triples Theorem]

Solution: Write the equation as

2y2 = x4 − 1 = (x2 + 1)(x2 − 1)

Clearly x is odd, so both x2 + 1 and x2 − 1 are even, hence 4 divides 2y2,
so y is even, and hence 8 divides 2y2. Now since x is odd, x2 ≡ 1mod4,
so x2 + 1 ≡ 2 mod 4. Thus 2 divides x2 + 1 but 4 does not. Also, x2 + 1
and x2−1 do not share any prime factors besides 2, since if p divides both,
then p divides their difference, which is 2, so p must be 2. So we rewrite
our equation as

y2 =
x2 + 1

2
(x2 − 1)

where the two factors are coprime. Hence by Lemma 5.4 they are both
perfect squares. So we can write x2 − 1 = r2 for some integer r. But then

x2 + r2 = 1,

and the only solutions for x and r are 0 or ±1. x = 0 doesn’t satisfy our
original equation, since −2y2 = 1 has no solution. Thus x = ±1, from
which we see that y must be zero.


