MATH 115, SUMMER 2012
 HOMEWORK 5 SOLUTION

JAMES MCIVOR

(1) (NZM 3.5.1) Find a reduced form equivalent to $7 x^{2}+25 x y+23 y^{2}$.

Solution: By applying step 2 with $k=2$, and then step 1 , we obtain the reduced form $x^{2}+3 x y+7 y^{2}$.
(2) (NZM 3.5.4) Show that a binary quadratic form f properly represents an integer n if and only if there is a form equivalent to f in which the coefficient of x^{2} is n.

Solution: First assume f is equivalent to a form $g(x, y)=n x^{2}+k x y+$ $m y^{2}$ for some k, m. Then $g(1,0)=n$ and this representation is proper since the gcd of 0 and 1 is 1 . This means that f also represents n properly since equivalent forms properly represent the same integers.

For the other direction, suppose f properly represents n. Then there are coprime integers s, t such that $f(s, t)=n$. Since s and t are coprime, there exist integers α, β such that $\alpha s+\beta y=1$. Now consider the matrix $\left(\begin{array}{cc}s & -\beta \\ t & \alpha\end{array}\right)$. It has determinant one, so it's in the moidular group. Therefore $f(x, y)=a x^{2}+b x y+c y^{2}$ is equivalent to the form

$$
\begin{aligned}
g(x, y) & =\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
s & t \\
-\beta & \alpha
\end{array}\right)\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)\left(\begin{array}{cc}
s & -\beta \\
t & \alpha
\end{array}\right)\binom{x}{y} \\
& =\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
s & t \\
-\beta & \alpha
\end{array}\right)\left(\begin{array}{cc}
a s+b t / 2 & * \\
b s / 2+c t & *
\end{array}\right)\binom{x}{y} \\
& =\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
a s^{2}+b s t+c t^{2} & * \\
* & *
\end{array}\right)\binom{x}{y} \\
& =\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
n & * \\
* & *
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

where * denotes something I'm too lazy to compute, but which doesn't matter anyway, because this equivalent form has x^{2} coefficient equal to n, as desired.
(3) Find all reduced positive definite primitive forms of discriminant -7 .

Solution: If $d=-7$, we have $7=4 a c-b^{2}$, so b must be odd. Also the reduction theorem tells us that $|b| \leq a \leq \sqrt{7 / 3}$, so $|b| \leq a \leq 1$. Thus
$|b|=a=1$, and since $b>-a, b$ must be 1 . Solving for c in the previous equation gives $c=2$. This gives two reduced forms $x^{2} \pm x y+2 y^{2}$.
(4) Find all reduced positive definite primitive forms of discriminant -8 .

Solution: We have $8=4 a c-b^{2}$ so b is even. By the reduction theorem, $|b| \leq a \leq 1$, so $|b|=0$. Thus $4 a c=8$, so $a=1, c=2$, giving the reduced form $x^{2}+2 y^{2}$.
(5) Find all reduced positive definite primitive forms of discriminant -27 .

Solution: We have $27=4 a c-b^{2}$, so b is odd, and $|b| \leq a \leq 3$ by the reduction theorem. If $|b|=a=3$, then $36=12 c$, so $c=3$ also, so this form is not primitive. Thus $|b|$ must be 1 , hence $28=4 a c$ so one of a or c is 1 , the other is 7 . To be reduced, we must have $a \leq c$, so $a=1, c=7$. Since $b>-a, b$ must be positive 1, giving the form $x^{2}+x y+7 y^{2}$.
(6) Determine which prime numbers are represented by the form $2 x^{2}+3 y^{2}$.

Solution: Call this form f. Its discriminant is -24 . First we determine whether there are any other reduced primitive forms of discriminant -24 . For this we would have $24=4 a c-b^{2}$, so b is even; also $|b| \leq a \leq 2$ by the reduction theorem. If $|b|=2$, then $a=2$ also and we get $28=4 a c=8 c$, which is impossible. Thus $b=0$, so $24=4 a c$, hence $6=a c$. Since we must have $a \leq c$ and $a \leq 2$, the only possibilities are $a=2, c=3$ and $a=1, c=6$. Thus there are two reduced forms of discriminant -24 , namely $f=2 x^{2}+3 y^{2}$ and $g=x^{2}+6 y^{2}$.

It's clear that $p=2$ and $p=3$ are both represented by f. From now on, consider $p>3$. By our theorem from class (the " p-rep Thm"), we know that a prime p is represented by one of these forms if and only if -24 is a square $\bmod p$. We compute the Legendre symbol

$$
\left(\frac{-24}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)^{3}\left(\frac{3}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)\left(\frac{p}{3}\right)(-1)^{(p-1) / 2}=\left(\frac{2}{p}\right)\left(\frac{p}{3}\right)
$$

Notice we use that $p \neq 3$ in applying the QRL in the second equality. The quantity $\left(\frac{2}{p}\right)\left(\frac{p}{3}\right)$ is one iff either

$$
\left\{\begin{array}{l}
p \equiv \pm 1 \quad \bmod 8 \\
p \equiv 1 \quad \bmod 3
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
p \equiv \pm 3 \quad \bmod 8 \\
p \equiv 2 \quad \bmod 3
\end{array}\right.
$$

We now show that the values of p satisfying the second conditions are not represented by g, because if $p=x^{2}+6 y^{2}$ for some x, y, then reducing $\bmod 3$ gives $p \equiv x^{2}$, so $p \equiv 1 \bmod 3$. Thus all primes $p>3$ satisfying the second conditions are represented by f.

Conversely, we have to show also that any prime $p>3$ represented by f satisfies $p \equiv \pm 3 \bmod 8$ and $p \equiv 2 \bmod 3$. The second condition is
straightforward: if $p=2 x^{2}+3 y^{2}$, then reducing $\bmod p$ gives $p \equiv 2 x^{2}$, and x^{2} must be one, since 0,1 are the only squares $\bmod 3$ and $x \neq 0$ or else p would be a multiple of 3 . For the $\bmod 8$ condition, if $p=2 x^{2}+3 y^{2}$, then y must be odd, say $y=2 m+1$. If x is even, say $x=2 k$, then

$$
p=8 k^{2}+12 m^{2}+12 m+3 \equiv 12 m(m+1)+3 \equiv 3 \bmod 8
$$

since $m(m+1)$ must be even. If x is odd, say $x=2 k+1$, then

$$
p=8 k^{2}+8 k+2+12 m^{2}+12 m+3 \equiv 12 m(m+1)+5 \equiv-3 \quad \bmod 8,
$$

using again that $m(m+1)$ is even. Thus we've proved that the primes represented by f are $p=2,3$, and those primes $p>3$ such that $p \equiv \pm 3$ $\bmod 8$ and $p \equiv 2 \bmod 3$.
(7) Determine which prime numbers are represented by the form $x^{2}+7 y^{2}$.

Solution: Call this form f. Its discriminant is -28 . First we see whether there are other primitive reduced forms of discriminant -18 . Such forms must have $28=4 a c-b^{2}$ so b must be even, and $|b| \leq a \leq \sqrt{28 / 3}$, so $|b| \leq a \leq 3$. We cannot have $|b|=2$, because then $a \geq 2$, and $32=4 a c$, so a, c are also divisible by 2 and this is not primitive. So $b=0$, hence $7=4 a c$, so $a=1$ and $c=7$, and the only primitive reduced form of discriminant -28 is our f.

It's clear that 7 is represented by f, and $2,3,5$ are not, so from now on consider an odd prime $p>7$ (this is to make sure we can use quadratic reciprocity). Such a prime p is represented by f iff

$$
1=\left(\frac{-28}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)^{2}\left(\frac{7}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{7}\right)(-1)^{\frac{p-1}{2} \frac{7-1}{2}}=\left(\frac{p}{7}\right)
$$

This happens iff p is a square $\bmod 7$. The quadratic residues $\bmod 7$ are 1,2 , and 4. So an odd prime p is represented by f iff $p=7$ or $p \equiv 1,2,4$ $\bmod 7$.
(8) Determine which prime numbers are represented by the form $x^{2}+8 y^{2}$.

Solution: Call the form f; it has discriminant -32. What other primitive reduced forms have this discriminant? We would have $32=4 a c-b^{2}$ and $|b| \leq a \leq 3$, and b must be even. If $b=0$, then we have $a c=8$, and a could be at most 2 , but if so then $c=4$ so we don't get a primitive form. Thus we get the form $a=1, b=0, c=8$, which is our f.

On the other hand, if $|b|=2$, we have $9=a c$. Since $a \geq|b|=2$, a must be 3 , hance $c=3$. Since $a=c, b$ must be positive, and we get the form $g=3 x^{2}+2 x y+3 y^{2}$.

So there are two primitive reduced forms of discriminant -32 , namely $f=x^{2}+8 y^{2}$ and $g=3 x^{2}+2 x y+3 y^{2}$. A prime p is represented by f or g iff

$$
1=\left(\frac{-32}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)^{5}=(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)
$$

which happens iff either

$$
\left\{\begin{array}{l}
p \equiv 1 \quad \bmod 4 \\
p \equiv \pm 1 \quad \bmod 8
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
p \equiv 3 \quad \bmod 4 \\
p \equiv \pm 3 \quad \bmod 8
\end{array}\right.
$$

But if $p \equiv-1 \bmod 8$, then it can't be congruent to $1 \bmod 4$, and similarly if $p \equiv-3 \bmod 8$, it can't be congruent to $3 \bmod 4$, so actually the conditions are just

$$
p \equiv 1 \quad \bmod 8 \quad \text { or } \quad p \equiv 3 \quad \bmod 8
$$

So primes represented by f or g must be congruent to 1 or $3 \bmod 8$. We now show that those congruent to $1 \bmod 8$ are not represented by g. For if

$$
p=3 x^{2}+2 x y+3 y^{2}
$$

then x and y have opposite parity, say x even and y odd, so $x y$ is even and reducing mod 4 gives

$$
p \equiv 3\left(x^{2}+y^{2}\right) \quad \bmod 4
$$

Now the only squares mod 4 are 0 and 1 , depending on whether the integer is even or odd respectively, so $x^{2} \equiv 0 \bmod 4$ and $y^{2} \equiv 1 \bmod 4$, so the above shows that if p is represented by g then $p \equiv 3 \bmod 4$. Thus p is represented by f iff $p \equiv 1 \bmod 8$.
(9) Prove that if $a=0$, the form $a x^{2}+b x y+c y^{2}$ is not definite.

Solution: If $a=0$, our form looks like $b x y+c y^{2}=(b x+c y) y$. By fixing $y=1$ and varying x, we can obtain both positive and negative values, so the form is indefinite. In particular, it's not definite.
(10) Prove that if $f(x, y)=a x^{2}+b x y+c y^{2}$ is a reduced positive definite form, then the smallest positive integer represented by f is a.

Solution: Suppose that f represents k, where $0<k<a$. Then $f(x, y)=k$ for some $x, y \in \mathbb{Z}$. We seek a contradiction. If $x=0$, then $c y^{2}=k<a$, so $a>c$, contradicting the fact that f is reduced. If $y=0$ then $a x^{2}=k<a$, which forces $x=0$, but then $k=0$, contradiction. So x and y must both be nonzero. If $0<|x| \leq|y|$, then since $|b| \leq c$, we have $|b y| \leq c y$ and hence $|b x y| \leq c y^{2}$. This means $b x y+c y^{2} \geq 0$, so $a x^{2}+b x y+c y^{2} \geq a x^{2}$. Then we get

$$
k=a x^{2}+b x y+c y^{2} \geq a x^{2} \geq a
$$

contradicting the fact that $k<a$. The final case, when x, y are nonzero and $|x| \geq|y|$, is handled similarly.
(11) (NZM 5.2.2) For what integers a, b, c does the system

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =a \\
x_{1}+4 x_{2}+9 x_{3}+16 x_{4} & =b \\
x_{1}+8 x_{2}+27 x_{3}+64 x_{4} & =c
\end{aligned}
$$

have a solution in integers? What are the solutions if $a=b=c=1$?
Solution: We write the system in matrix form:

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16 \\
1 & 8 & 27 & 64
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)
$$

By subtracting off copies of the first row, one gets

$$
I_{3} A I_{4} \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 2 & 6 & 12 \\
0 & 6 & 24 & 60
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

By subtracting off copies of the second row,

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -3 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 2 & 6 & 12 \\
0 & 0 & 6 & 24
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Now we subtract off copies of the first column:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -3 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 6 & 12 \\
0 & 0 & 6 & 24
\end{array}\right)\left(\begin{array}{cccc}
1 & -2 & -3 & -4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Finally subtract off copies of the second and third columns:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -3 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & -2 & 3 & -4 \\
0 & 1 & -3 & 6 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Now we replace \mathbf{b} by $\mathbf{c}=L \mathbf{b}$, where L is the 3×3 matrix on the left above:

$$
\mathbf{c}=\left(\begin{array}{c}
a \\
b-a \\
2 a-3 b+c
\end{array}\right)
$$

Since the given system is equivalent to the system $D \mathbf{y}=\mathbf{c}$, where D is the diagonal matrix in the middle above, we have a solution if and only if $2 \mid b-a$ and $6 \mid 2 a-3 b+c$. Thus a and b can be any integers of the same parity, and $c \equiv 3 b-2 a \bmod 6$.

In case $a=b=c=1$, our solution for \mathbf{y} is $y_{1}=1, y_{2}=y_{3}=0$, and $y_{4}=k$ is arbitrary. Since $\mathbf{x}=R \mathbf{y}$, where R is the 4×4 matrix on the right above, we have

$$
\mathbf{x}=\left(\begin{array}{cccc}
1 & -2 & 3 & -4 \\
0 & 1 & -3 & 6 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
k
\end{array}\right)=\left(\begin{array}{c}
1-4 k \\
6 k \\
-4 k \\
k
\end{array}\right)
$$

(12) (NZM 5.3.2) Prove that if x, y, z is a Pythagorean triple then at least one of x, y is divisible by 3 and at least one of x, y, z is divisible by 5 .

Solution: By Thm 5.5, x, y, z have the form

$$
\begin{aligned}
& x=a^{2}-b^{2} \\
& y=2 a b \\
& z=a^{2}+b^{2}
\end{aligned}
$$

Assume 3 doesn't divide y. Then $2 a b \not \equiv 0 \bmod 3$, so $a b \not \equiv 0 \bmod 3$ since 2 is a unit mod 3. Thus 3 doesn't divide a or b. But then by Fermat's Little Thm $a^{2}-b^{2} \equiv 1-1=0 \bmod 3$, so $3 \mid x$.

Now assume 5 doesn't divide y, so it deosn't divide a or b. Since $x z=a^{4}-b^{4} \equiv 1-1=0 \bmod 5($ using Fermat's Little Thm), 5 divides $x z$ and since 5 is prime, 5 divides x or 5 divides z.
(13) (NZM 5.3.12) Show that if x, y satisfy $x^{4}-2 y^{2}=1$, then $x= \pm 1, y=0$. [Hint: Imitate the proof of the Pythagorean Triples Theorem]

Solution: Write the equation as

$$
2 y^{2}=x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)
$$

Clearly x is odd, so both $x^{2}+1$ and $x^{2}-1$ are even, hence 4 divides $2 y^{2}$, so y is even, and hence 8 divides $2 y^{2}$. Now since x is odd, $x^{2} \equiv 1$ mod4, so $x^{2}+1 \equiv 2 \bmod 4$. Thus 2 divides $x^{2}+1$ but 4 does not. Also, $x^{2}+1$ and $x^{2}-1$ do not share any prime factors besides 2 , since if p divides both, then p divides their difference, which is 2 , so p must be 2 . So we rewrite our equation as

$$
y^{2}=\frac{x^{2}+1}{2}\left(x^{2}-1\right)
$$

where the two factors are coprime. Hence by Lemma 5.4 they are both perfect squares. So we can write $x^{2}-1=r^{2}$ for some integer r. But then

$$
x^{2}+r^{2}=1
$$

and the only solutions for x and r are 0 or $\pm 1 . x=0$ doesn't satisfy our original equation, since $-2 y^{2}=1$ has no solution. Thus $x= \pm 1$, from which we see that y must be zero.

