MATH 115, SUMMER 2012 HOMEWORK 5 DUE TUESDAY, JULY 31ST

JAMES MCIVOR

(1) (NZM 3.5.1) Find a reduced form equivalent to $7 x^{2}+25 x y+23 y^{2}$.
(2) (NZM 3.5.4) Show that a binary quadratic form f properly represents an integer n if and only if there is a form equivalent to f in which the coefficient of x^{2} is n.
(3) Find all reduced positive definite primitive forms of discriminant -7 .
(4) Find all reduced positive definite primitive forms of discriminant -8 .
(5) Find all reduced positive definite primitive forms of discriminant -27 .
(6) Determine which prime numbers are represented by the form $2 x^{2}+3 y^{2}$.
(7) Determine which prime numbers are represented by the form $x^{2}+7 y^{2}$.
(8) Determine which prime numbers are represented by the form $x^{2}+8 y^{2}$.
(9) Prove that if $a=0$, the form $a x^{2}+b x y+c y^{2}$ is not definite.
(10) Prove that if $f(x, y)=a x^{2}+b x y+c y^{2}$ is a reduced positive definite form, then the smallest positive integer represented by f is a.
[Hint: Suppose f represents k, where $0<k<a$, and consider separately the four cases:
(a) $x=0$
(b) $y=0$
(c) x, y both nonzero but $|x| \leq|y|$.
(d) x, y both nonzero but $|y| \leq|x|$.
(11)
(NZM 5.2.2) For what integers a, b, c does the system

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =a \\
x_{1}+4 x_{2}+9 x_{3}+16 x_{4} & =b \\
x_{1}+8 x_{2}+27 x_{3}+64 x_{4} & =c
\end{aligned}
$$

have a solution in integers? What are the solutions if $a=b=c=1$?
(12) (NZM 5.3.2) Prove that if x, y, z is a Pythagorean triple then at least one of x, y is divisible by 3 and at least one of x, y, z is divisible by 5 .
(13) (NZM 5.3.12) Show that if x, y satisfy $x^{4}-2 y^{2}=1$, then $x= \pm 1, y=0$. [Hint: Imitate the proof of the Pythagorean Triples Theorem]

More Hints:
(a) Write the equation as $2 y^{2}=x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)$
(b) Show that the gcd of $x^{2}-1$ and $x^{2}+1$ is 2 . You may want to consider $x^{2}+1 \bmod 4$ to see this
(c) Show that $\frac{x^{2}+1}{2}$ and $x^{2}-1$ are both square integers.
(d) Thus $x^{2}-1=r^{2}$ for some r. Use this to figure out what x could be, then figure out y.

