
Math 115, Summer 2012
Homework 4

Solution

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems
appearing in other editions, so use the version printed here to be safe).

(1) (NZM 3.1.7) Which of the following congruences have solutions?
(a) x2 ≡ 2 mod 61
(b) x2 ≡ −2 mod 61
(c) x2 ≡ 2 mod 59
(d) x2 ≡ −2 mod 118
Solution: Only (d) has a solution. To figure out (d), split the congruence into the two

congruences

x2 ≡ −2 mod 59

x2 ≡ −2 ≡ 0 mod 2

The second one just say that x must be even, so we’ll be done if we can find a solution to
the first one that is even. You can use Euler’s criterion to find that there are exactly two
solutions to the first one. Let x0 be one of them, and by reducing mod 59 we can assume
0 < x0 < 59. Now if x is a solution, then so is −x (mod 59), and by reducing −x0 so it’s
in the range (0, 59), we can write −x0 = 59− x0. Therefore if x0 is even, then −x0 is odd,
and vice versa, so exactly one of the two solutions is even, and this even solution solves
both congruences, hence it solves the original congruence.

(2) (NZM 3.1.13) Prove that if r is a quadratic residue mod m > 2, then rφ(m)/2 ≡ 1 mod m.
Solution: By the assumption, there is x such that x2 ≡ r mod p. Raising both sides

to the power φ(m)/2 gives

xφ(m) ≡ rφ(m)/2 mod m

Now by definition of quadratic residue, r is prime to m, and hence so is x. Thus by Euler’s
Theorem, xφ(m) ≡ 1 mod m, and we’re done.

(3) (NZM 3.1.19) Prove that for all primes p, x8 ≡ 16 mod p has a solution. [Hint in the book]
Solution: First, if p = 2, we get x8 ≡ 0 mod 2, for which any even x is a solution. Now

let p > 2. For this, following the hint, we need a formula which I didn’t give in class. Sorry
if this caused confusion. Thm 2.37 is a sort of generalized Euler’s Criterion, which says in
this case that

x8 ≡ 16 mod p

has solutions for x if and only if

16
p−1

(8,p−1) ≡ 1 mod p,

which can be rewritten as
24

p−1
(4,p−1) ≡ 1 mod p

Now g = (8, p − 1) can only be g = 1, 2, 4, or 8. If g < 8, then 4/g is an integer, and we
have

(2p−1)4/g ≡ 14/g ≡ 1 mod p



2

by Euler’s Theorem. Thus our congruence has a solution except possibly when (8, p−1) = 8.

In this case, we have p ≡ 1 mod 8, which tells us that
(

2
q

)
= 1, so the congruence x2 ≡ 2

mod p has a solution. Raising both sides to the fourth power shows that x8 ≡ 16 mod p,
has a solution.

(4) (NZM 3.2.3) Prove that if a prime p has the form 4k + 1, and is a quadratic residue mod
an odd prime q, then q is a quadratic residue mod p.

Solution:

1 =

(
4k + 1

q

)
=

(
q

p

)
(−1)

4k
2

q−1
2 =

(
q

p

)
,

so q is a QR mod p.

(5) (NZM 3.2.4) Which of the following congruences is solvable?
(a) x2 ≡ 5 mod 227
(b) x2 ≡ 5 mod 229
(c) x2 ≡ −5 mod 227
(d) x2 ≡ −5 mod 229
(e) x2 ≡ 7 mod 1009
(f) x2 ≡ −7 mod 1009

[Hint: 227,229, and 1009 are primes]
Solution: b,c,d,e,f

(6) (NZM 3.2.6) Decide whether x2 ≡ 150 mod 1009 is solvable or not.
Solution: Note that 1009 is prime (look it up!)(
150

1009

)
=

(
2

1009

)(
3

1009

)(
5

1009

)2

= 1 ·
(

1009

3

)
(−1)

1008
2

2
2 · 1 = 1 · 1 · 1 = 1,

so it has a solution.
(7) (NZM 3.2.7) Find all primes such that x2 ≡ 13 mod p has a solution.

Solution: If p = 2, we have the solution x = 1. For any odd p, let p′ denote its least
positive residue mod 13. Then(

13

p

)
=

( p

13

)
=

(
p′

13

)
,

so p′ must be a QR mod 13. A quick check shows that p′ ≡ ±1,±3,±4 mod 13.

(8) (NZM 3.2.9) Find all primes q such that
(

5
q

)
= −1.

Solution: First suppose q = 2. The congruence x2 ≡ 5 ≡ 1 mod 2 has a solution, so
this value of q does not work. Now let q be odd, and as above, let q′ be the least positive
residue of q mod 5; then (

5

q

)
=

(q
5

)
= −1

implies that q′ is a QNR mod 5, so it must be either 2 or 3. Hence the allowed values of q
are those odd primes q for which q ≡ 2, 3 mod 5.
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(9) (NZM 3.2.13) Prove that there are infinitely many primes of the form 3n+ 1.

[Hint: Proceed just like in Euclid’s proof that there are infinitely many primes, namely as-
sume there are only finitely many, say p1, . . . , pr. We want a contradiction. Let a = p1 · · · pr
be their product. Note a has the form 3n+ 1, too. Here’s the trick: Look at N = (2a)2 + 3.
Now consider a prime q dividing n, and show it cannot be in our list p1, . . . , pr, using qua-
dratic reciprocity. Note the factor of 2 in the expression for N is to make sure that q is odd.]

Solution: Suppose there are finitely many such, call them p1, . . . , pr. Set a = p1 · · · pr,
note that a also has the form 3n+ 1 and let N = (2a)2 + 3. Let q be a prime with q|N , so
q is odd. First we show q can’t be one of the pis. Since a ≡ 0 mod pi, N ≡ 3 mod pi for
each i. But since q|N , N ≡ 0 mod q, so q is different from the pis (note none of the pis
are 3, since they all have the form 3n+ 1). Next, we have from the definition of N that

(2a)2 ≡ −3 mod q

In particular, the congruence x2 ≡ −3 mod q has a solution in x. So
(
−3
q

)
= 1.

But we can also compute
(
−3
q

)
with quadratic reciprocity:(

−3

q

)
=

(
−1

q

)(
3

q

)
= (−1)

q−1
2

(q
3

)
(−1)

3−1
2

q−1
2 =

(q
3

)
,

and
(
q
3

)
= 1 iff q ≡ 1 mod 3, since

(
q
3

)
≡ (q)

3−1
2 ≡ q mod 3. We saw above that

(
−3
q

)
= 1,

and therefore we have shown that q ≡ 1mod3, so q is a prime of the form 3n+ 1, which is a
contradiction, since we checked above that q is different from the pis, and we assumed that
those were all of the primes of the form 3n+ 1.

(10) (NZM 3.2.14) Let p and q be twin primes, that is, primes satisfying q = p + 2. Prove
that there is an integer a such that p|(a2 − q) if and only if there is an integer b such that
q|(b2 − p).

Solution: There exists an integer a such that p|(a2− q) iff a2 ≡ q mod p has a solution
iff (

q

p

)
= 1

Similarly, there exists a b such that q|(b2 − q) iff(
p

q

)
= 1,

so it will be enough to show the two Legendre symbols are the same. But by quadratic
reciprocity, (

q

p

)
=

(
p

q

)
(−1)

p−1
2

q−1
2 =

(
p

q

)
(−1)

p−1
2

p+1
2

and the exponent on the last −1 is even, since p−1
2 and p+1

2 are adjacent integers, so one
of them must be even.


