Math 115, Summer 2012 Homework 4 Due Tuesday, July 16th

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).

- (1) (NZM 3.1.7) Which of the following congruences have solutions?
 - (a) $x^2 \equiv 2 \mod 61$
 - (b) $x^2 \equiv -2 \mod 61$
 - (c) $x^2 \equiv 2 \mod 59$
 - (d) $x^2 \equiv -2 \mod 118$
- (2) (NZM 3.1.13) Prove that if r is a quadratic residue mod m > 2, then $r^{\phi(m)/2} \equiv 1 \mod m$. [Hint in the book]
- (3) (NZM 3.1.19) Prove that for all primes $p, x^8 \equiv 16 \mod p$ has a solution. [Hint in the book]
- (4) (NZM 3.2.3) Prove that if a prime p has the form 4k + 1, and is a quadratic residue mod an odd prime q, then q is a quadratic residue mod p.
- (5) (NZM 3.2.4) Which of the following congruences is solvable?
 - (a) $x^2 \equiv 5 \mod 227$
 - (b) $x^2 \equiv 5 \mod 229$
 - (c) $x^2 \equiv -5 \mod 227$
 - (d) $x^2 \equiv -5 \mod 229$
 - (e) $x^2 \equiv 7 \mod 1009$
 - $(f) x^2 \equiv -7 \mod 1009$

[Hint: 227,229, and 1009 are primes]

- (6) (NZM 3.2.6) Decide whether $x^2 \equiv 150 \mod 1009$ is solvable or not.
- (7) (NZM 3.2.7) Find all primes such that $x^2 \equiv 13 \mod p$ has a solution.
- (8) (NZM 3.2.9) Find all primes q such that $\left(\frac{5}{q}\right) = -1$.
- (9) (NZM 3.2.13) Prove that there are infinitely many primes of the form 3n + 1.

[Hint: Proceed just like in Euclid's proof that there are infinitely many primes, namely assume there are only finitely many, say p_1, \ldots, p_r . We want a contradiction. Let $a = p_1 \cdots p_r$ be their product. Note a has the form 3n+1, too. Here's the trick: Look at $N = (2a)^2 + 3$. Now consider a prime q dividing n, and show it cannot be in our list p_1, \ldots, p_r , using quadratic reciprocity. Note the factor of 2 in the expression for N is to make sure that q is odd.]

(10) (NZM 3.2.14) Let p and q be twin primes, that is, primes satisfying q = p + 2. Prove that there is an integer a such that $p|(a^2 - q)$ if and only if there is an integer b such that $q|(b^2 - p)$.