
Math 115, Summer 2012
Homework 3

Solution

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems
appearing in other editions, so use the version printed here to be safe).

(1) (NZM 2.6.2) Solve the congruence x5 + x4 + 1 ≡ 0 mod 34, if possible.
Solution: First we solve it mod 3. Plugging in 0,1,2 and reducing mod 3 gives 1,0,1, so

the only root mod 3 is 1. First we check to see if this is nonsingular: if f(x) = x5 + x4 + 1,

f ′(x) = 5x4 + 4x3 ≡ 2x2 + x mod 3,

so f ′(1) ≡ 0 mod 3, and the root is singular. We saw in class that this means there may be
no liftings, or many liftings. We write out the Taylor series to see which possibility occurs:

f(1 + 3t) = f(1) + 3tf ′(1) + . . . ≡ f(1) = 3 6≡ 0 mod 9

so the only root 1 mod 3 DOES NOT lift to a root mod 9. Thus there are no solutions
mod 9, and hence none mod 34

(2) Solve the congruence x3 + x+ 57 ≡ 0 mod 1125.
Solution: 1125 = 32 · 53. First we solve it mod 3. x3 + x + 57 ≡ 2x mod 3, so the

only root is 0. This is nonsingular since f ′(x) = 3x2 + 1 ≡ 1 mod 3. So if a = 1, we have
f ′(a) = f ′(a)−1 = 1. Set a1 = a = 1, and lift

a2 = a1 − f(a1)f ′(a)−1 = 1− 57 · 1 ≡ −3 ≡ 6 mod 9

So a2 = 6 is our root mod 9.
Now we work mod 5. We have x3 + x+ 57 ≡ x3 + x+ 2 ≡ 0 mod 5, and trial and error

shows that x = 4 is the only root. It’s nonsingular since f ′(4) = 3 · 42 + 1 ≡ 4 mod 5, so
f ′(a)−1 = 4 mod 5. Now set a1 = a = 4 and lift:

a2 = a1 − f(a1)f ′(a)−1 = 4− 25 · 4 ≡ 4 mod 25

a3 = a2 − f(a2) · f ′(a)−1 = 4− 125 · 4 ≡ 4 mod 125

So our root mod 125 is 4. Now we use the CRT. We want x such that

x ≡ 6 mod 9

x ≡ 4 mod 125

One way to solve this is to note that the second one says x = 6 + 125k for some k.
Substitute this into the first, giving

6 + 125k ≡ 6 mod 9

which reduces to 4m ≡ 1 mod 9. Since (4, 9) = 1, we can find an inverse to 4 mod 9,
namely 7, giving m=7 so x = 4 + 125 · 7 = 879, which we can consider mod 1125.

(3) For each n = 0, 1, 2, 3, 4, give an example of a congruence which has exactly n solutions
mod 5.

Solution: Consider the congruence

f(x) ≡ 0 mod 5
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Setting f(x) = 1, there are no solutions; with f(x) = x there is one; with f(x) ≡ x2 there
are two, as we proved some time ago. Setting f(x) = x(x− 1)(x− 2) gives three solutions,
and f(x) = x(x − 1)(x − 2)(x − 3) gives four. It was not asked, but for five solutions, we
have two options: the obvious f(x) = 0, and also the polynomial f(x) = x5 − x - every x
mod 5 is a solution, by Fermat’s Little Theorem.

(4) (NZM 2.7.4) Prove that if f(x) ≡ 0 mod p has j solutions x ≡ a1, x ≡ a2, . . . , x ≡ aj ,
then there is a polynomial q(x) such that f(x) ≡ (x− a1)(x− a2) · · · (x− aj)q(x) mod p.
(the textbook has a hint)

Solution: It’s enough by induction to prove that if a is a root mod p, then (x−a) | f(x)
mod p.

We write

f(x) = (x− a)q(x) + r(x),

where r(x) is either identically zero mod p or else has degree less than that of (x − a). In
the latter case, we have r(x) = c 6≡ 0 mod p. Plugging in x = a to the above equation then
gives 0 ≡ c mod p, a contradiction, so r(x) is the zero polynomial mod p, which means
(x− a) divides f mod p.

(5) How many primitive roots mod 101 are there?
Solution: By the formula from class, since 101 is prime, there are φ(p−1) = φ(100) = 40

primitive roots mod 101.
(6) (NZM 2.8.1) Find a primitive root mod p for each of the primes p = 3, 5, 7, 11, 13.

Solution: You only needed to find one primitive root for each modulus, but for com-
pleteness, I list all of them: 2 is a primitive root mod 3; 2 and 3 are primitive roots mod 5;
3 and 5 are primitive roots mod 7; 2,6,7, and 8 are primitive roots mod 11; and 2,6,7, and
11 are primitive roots mod 13.

(7) (NZM 2.8.4) Find the orders of 1,2,3,4,5, and 6 mod 7.
Solution: Note that in checking this, you know the order must divide φ(7) = 6, so the

only possible orders are 1,2,3, and 6. The answers are 1,3,6,3,6,2 respectively.
(8) (NZM 2.8.5) Let p be an odd prime. Prove that a has order 2 mod p if and only if a ≡ −1

mod p.
Solution: If a has order two, the a2 ≡ 1 mod p, and we proved in class that this implies

a ≡ ±1 mod p. But a 6≡ 1 mod p, for then it would have order 1. So a ≡ −1.
Conversely, assume a ≡ −1 mod p. Then certainly a2 ≡ 1 mod p. So the order of a

divides 2. It cannot be 1, since the only element with order 1 is 1 itself, and 1 6≡ −1 mod p,
since p is odd, hence p > 2. Thus the order is actually 2.

(9) (NZM 2.8.6) If a has order h mod m, prove that no two of the numbers a, a2, . . . , ah are
congruent mod m.

Solution: Suppose for contradiction that a has order h, but ai ≡ aj for some i, j with
1 ≤ i < j ≤ h. Then cancelling ai gives 1 ≡ aj−i, and since j − i < h, this contradicts the
fact that a has order h.

(10) Prove that if a has order 3 mod p, then a2 + a+ 1 ≡ 0 mod p, and 1 + a has order 6 mod
p.

Solution: Since a has order 3, we have a3 ≡ 1 mod p, hence 0 ≡ a3−1 = (a−1)(aa2 +
a + 1) mod p. Since p is prime (so there are no zerodivisors in Z/p), either a − 1 ≡ 0
mod p or a2 +a+ 1 ≡ 0 mod p. It can’t be the case that a− 1 ≡ 0 mod p, or else a would
have order 1; thus a2 + a+ 1 ≡ 0 mod p.
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From the first part we have 1 + a ≡ −a2 ≡ (−1) · a2 mod p. Now the order of a2 is
three since (a2)3 = (a3)2 ≡ 12 mod p, and a2 6≡ 1 since a has order 3, and a4 6≡ 1 since the
order of a would then divide 4. Meanwhile, the order of (−1) is 2, and since −1 ≡ p − 1
and a and p − 1 are relatively prime (a 6≡ p − 1 ≡ −1 or else the order of a would be 2).
This means that by a theorem from class, the order of their product is the product of their
orders, namely 6.

(11) Let p be an odd prime, and set

f(x) = xp−1 − 1, g(x) = (x− 1)(x− 2) · · · (x− (p− 1))

Prove the following:
(a) The degree of the polynomial f(x)− g(x) is p− 2.
(b) If c is any integer 0 < c < p, then f(c) ≡ g(c) ≡ 0 mod p.
(c)

f(x) ≡ g(x) mod p

[Recall that we say two polynomials are congruent mod p if each of their coefficients
are congruent mod p. For example, 5x3 − x2 + 2x+ 1 ≡ 4x2 + 7x− 9 mod 5.]

Solution:
(a) The first few terms of g are xp−1 − (1 + 2 + · · · + (p − 1))xp−2 + · · · , so the leading

term of f − g is (1 + 2 + · · ·+ (p− 1))xp−2.
(b) By Fermat’s Little Theorem, f(c) ≡ 1− 1 = 0, as long as c 6= 0. For any 0 < c < p, g

contains a factor (x− c), so g(c) = 0. Hence f(c) ≡ g(c) ≡ 0 mod p.
(c) The polynomial f −g has degree p−2 as an integer polynomial. We want to show that

it has no degree mod p. That is, when we reduce it mod p, we get the zero polynomial.
If it has a degree mod p, that degree is at most p − 2. But in (b) we exhibited p − 1
distinct roots mod p. So if it has a degree, this contradicts the fact that the number
of roots mod p is at most the degree mod p. Thus it has no degree, as desired, i.e.,
f − g ≡ 0 mod p, so f ≡ g mod p.

(12) Use the previous exercise to prove that for every prime p > 3,∑
1≤i<j≤p−1

ij ≡ 0 mod p

and ∑
1≤i<j<k≤p−1

ijk ≡ 0 mod p

For example, if p = 5, the first one says that

1 · 2 + 1 · 3 + 1 · 4 + 1 · 5 + 2 · 3 + 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5 + 4 · 5 ≡ 0 mod 5

Of course, you have to prove it for general p, not just p = 5.

Solution: By the previous result, the coefficients of each xk of f and g are congruent mod p.
The coefficients of xp−3 and xp−4 in f are 0 (note we’re using p ≥ 5 here). The coefficient of xp−3

in g is

(−1 · −2) + (−1 · −3) + · · ·+ (−2 · −3) + · · ·+ (−(p− 2)(−(p− 1))) =
∑

1≤i<j≤p−1

ij.
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Since this is congruent to the xp−3 coefficient of f , which is zero, that proves the first claim. The
second congruence is similar, just noting that the sum is exactly the coefficient of xp−4 if you expand
out the product defining g.


