Math 115, Summer 2012

Homework 3

Due Thursday, July 12th

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).
(1) (NZM 2.6.2) Solve the congruence $x^{5}+x^{4}+1 \equiv 0 \bmod 3^{4}$, if possible.
(2) Solve the congruence $x^{3}+x+57 \equiv 0 \bmod 1125$.
(3) For each $n=0,1,2,3,4$, give an example of a congruence which has exactly n solutions $\bmod 5$.
(4) (NZM 2.7.4) Prove that if $f(x) \equiv 0 \bmod p$ has j solutions $x \equiv a_{1}, x \equiv a_{2}, \ldots, x \equiv a_{j}$, then there is a polynomial $q(x)$ such that $f(x) \equiv\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{j}\right) q(x) \bmod p$. (the textbook has a hint)
(5) How many primitive roots mod 101 are there?
(6) (NZM 2.8.1) Find a primitive root $\bmod p$ for each of the primes $p=3,5,7,11,13$.
(7) (NZM 2.8.4) Find the orders of $1,2,3,4,5$, and $6 \bmod 7$.
(8) (NZM 2.8.5) Let p be an odd prime. Prove that a has order $2 \bmod p$ if and only if $a \equiv-1$ $\bmod p$.
(9) (NZM 2.8.6) If a has order $h \bmod m$, prove that no two of the numbers a, a^{2}, \ldots, a^{h} are congruent mod m.
(10) Prove that if a has order $3 \bmod p$, then $a^{2}+a+1 \equiv 0 \bmod p$, and $1+a$ has order $6 \bmod$ p.
(11) Let p be an odd prime, and set

$$
f(x)=x^{p-1}-1, \quad g(x)=(x-1)(x-2) \cdots(x-(p-1))
$$

Prove the following:
(a) The degree of the polynomial $f(x)-g(x)$ is $p-2$.
(b) If c is any integer $0<c<p$, then $f(c) \equiv g(c) \equiv 0 \bmod p$.
(c)

$$
f(x) \equiv g(x) \quad \bmod p
$$

[Recall that we say two polynomials are congruent mod p if each of their coefficients are congruent $\bmod p$. For example, $5 x^{3}-x^{2}+2 x+1 \equiv 4 x^{2}+7 x-9 \bmod 5$.]
(12) Use the previous exercise to prove that for every prime $p>3$,

$$
\sum_{1 \leq i<j \leq p-1} i j \equiv 0 \quad \bmod p
$$

and

$$
\sum_{1 \leq i<j<k \leq p-1} i j k \equiv 0 \quad \bmod p
$$

For example, if $p=5$, the first one says that

$$
1 \cdot 2+1 \cdot 3+1 \cdot 4+2 \cdot 3+2 \cdot 4+3 \cdot 4 \equiv 0 \quad \bmod 5
$$

Of course, you have to prove it for general p, not just $p=5$.

