
Math 115, Summer 2012
Homework 2

Solution

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems
appearing in other editions, so use the version printed here to be safe).

(1) (NZM 2.1.5) Write a single congruence that is equivalent to the pair of congruences x ≡ 1
mod 4 and x ≡ 2 mod 3.

Solution: The moduli are prime to each other, so we write one congruence in the new
modulus which is the product of the two given moduli, namely 12. If x ≡ 1 mod 4, then
x ≡ 1 or 5 or 9 mod 12. If x ≡ 2 mod 3, then x ≡ 2 or 5 or 8 or 11 mod 12. Thus the only
possibility mod 12 which reduces to the given two is x ≡ 5 mod 12.

Alt Sol’n with CRT: We’ve seen that the Chinese Remainder Theorem (which applies
since (4, 3) = 1) can be expressed as saying that Z/4 × Z/3 ∼= Z/12, and under this
isomorphism the element (1, 2) maps to 5 ∈ Z/12.

(2) (NZM 2.1.22) Prove that n6k−1 is divisible by 7 if (n, 7) = 1. Here k is any positive integer.
Solution: If n is prime to 7, then n6 ≡ 1 mod 7, hence n6k ≡ 1 mod 7 for any k ≥ 1.

This means 7|n6k − 1.
(3) Find an integer a such that {a, a2, a3, a4} is a reduced residue system mod 5.

Solution: This is called a primitive root mod 5. a = 2 works, as does a = 3, but a = 4
does not. We will see soon how to count the number of a mod 5 for which this holds.

(4) Find the smallest positive integer x which is congruent to 32412 mod 7.
Solution: We use Fermat’s little Thm, which says in this case that since 32 is prime to

7, 326 ≡ 1 mod 7. Since 412 = 68 · 6 + 4,

32412 = (326)68 · 324 ≡ 168 · 44 = 162 ≡ 22 = 4 mod 7

(5) (NZM 2.1.33) Show that {12, 22, 32, . . . ,m2} is not a complete residue system mod m if
m > 2.

Solution: It’s not a complete residue system because for any m > 2, both 12 and
(m− 1)2 are congruent to 1 mod m. (This fails for m = 2 since in this case 1 = m− 1).

(6) (NZM 2.1.35) If n is a composite positive integer, show that (n− 1)! + 1 is not a power of
n.

Solution: We can prove an even stronger result, which is a converse to Wilson’s The-
orem, namely if n is composite, (n − 1)! 6≡ −1 mod n. To see this, suppose that n has a
prime factor p. Then p < n − 1, and thus p appears as a factor in the product (n − 1)!,
which is therefore congruent to zero mod p. Hence it is not congruent to -1 mod p, and
so cannot be congruent to -1 mod n, either. Thius shows that (n − 1)! + 1 is not even a
multiple of n, much less a power of it.

(7) (NZM 2.1.40) If m is odd, show that the sum of all the elements of Z/m is equal to zero.
Solution: The key is that m is odd, so there are an even number of nonzero elements

in this ring. They pair up to give zero. More rigorously:

m∑
i=1

i = (1 + (m− 1)) + (2 + (m− 2)) + · · · (m/2 + (m−m/2)) = m+m+ · · ·+m ≡ 0 mod m
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(8) (NZM 2.1.48) If r1, . . . , rp and r′1, . . . , r
′
p are any two complete residue systems mod p, where

p is a prime greater than 2, show that the set {r1r′1, r2r′2, . . . , rpr′p} is not a complete residue
system mod p.

Solution: Suppose that the set S = {r1r′1, r2r′2, . . . , rpr′p} forms a complete residue
system mod p. Exactly one of the ri is congruent to zero mod p, call it rj , and exactly
one of the r′i is congruent to zero mod p, call it r′k. If j 6= k, there are two elements of S
congruent to zero mod p, so it’s not a complete residue system. Since we assumed it was,
we must have that j = k. Now we might as well reorder S so that r1 ≡ r′1 ≡ 0 mod p.
Then by Wilson’s Thm, we have

p∏
i=2

(rir
′
i) ≡ −1 mod p

but also, splitting the product we have

p∏
i=2

(rir
′
i) =

p∏
i=2

ri

p∏
i=2

r′i ≡ (−1)(−1) ≡ 1 mod p,

since each of {ri} and {r′i}, with 2 ≤ i ≤ p, forms a complete residue system. This is a
contradiction, since −1 6≡ 1 mod p unless p = 2, and we assumed that p > 2.

(9) (NZM 2.2.5d,e) Find all solutions of the congruences 57x ≡ 87 mod 105 and 64x ≡ 83
mod 105.

Solution: For the first one, we compute (57, 105) = 3. Since 3|87, there is a solution
which is unique mod 105

3 = 35. We first divide the congruence through by the gcd, giving

19x ≡ 29 mod 35

To find the inverse of 19 mod 35, we use div alg:

35 = 1 · 19 + 16

19 = 1 · 16 + 3

16 = 5 · 3 + 1

So

1 = 16− 5 · 3 = 16− 5(19− 16) = −5 · 19 + 6 · 16 = −5 · 19 + 6(35− 19) = 6 · 35− 11 · 19

So reducing this mod 35 shows that -11 is inverse to 19 mod 35. Thus

x ≡ −11 · 19x ≡ −11 · 29 = −319 ≡ 31 mod 35

The strategy for the second one is similar, and the answer is x ≡ 62 mod 105.
(10) (NZM 2.3.2) Find all integers x that satisfy all three congruences

x ≡ 1 mod 3

x ≡ 1 mod 5

x ≡ 1 mod 7.

Solution: After noting that the moduli are relatively prime, we set m = 3 · 5 · 7 = 105.
We want inverses to m

mi
mod mi, for i = 1, 2, 3.
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(
m

m1
)−1 = (

105

3
)−1 = 35−1 ≡ (−1)−1 = −1 mod 3

(
m

m2
)−1 = (

105

5
)−1 = 21−1 ≡ 1−1 = 1 mod 5

(
m

m3
)−1 = (

105

7
)−1 = 15−1 ≡ 1−1 = 1 mod 7

So we set

x = 35 · (−1) · 1 + 21 · 1 · 1 + 15 · 1 · 1 = 1 mod 105

This implicitly gives all integer solutions: all others differ from 1 by a multiple of 105, so
the solution set is {. . . ,−104, 1, 106, . . .}.

(11) (NZM 2.3.7) Determine whether the congruences 5x ≡ 1 mod 6 and 4x ≡ 13 mod 15 have
a common solution. Find the solutions, if any exist.

Solution: The moduli are not pairwise prime, so we split each modulus into prime power
factors and obtain a larger sytem of congruences as follows: 5x ≡ 1 mod 6 is equivalent
to the two congruences x ≡ 1 mod 2 and 2x ≡ 1 mod 3. The other congruence, 4x ≡ 13
mod 15, is equivalent to the two x ≡ 1 mod 3 and 4x ≡ 3 mod 5. Out of these four new
congruences, two are both mod 3, and they are inconsistent: If x ≡ 1 mod 3, then 2x ≡ 2,
not 1,

(12) (NZM 2.3.19) Let m1, . . . ,mr be relatively prime in pairs. Assuming that each of the con-
gruences bix ≡ ai mod mi has a solution, prove that the congruences have a simultaneous
solution (i.e., one x that satisfies all congruences at once).

Solution: This is just like the CRT, except now there’s a coefficient on each x. But our
assumption is that each congruence bix ≡ ai mod mi has a solution, which we have seen
can happen if and only if gi = (bi,mi) divides ai. Divide through each congruence by gi,
giving

bi
gi
x ≡ ai

gi
mod

mi

gi

All the new moduli mi

gi
are still pairwise prime, and moreover, the coefficient v is prime to

the modulus mi

gi
, so it has a multiplicative inverse mod mi

gi
, call it ci. Multiplying each of

these new congruences by this inverse gives a system of congruences of the form

x ≡ ai
gi
ci mod

mi

gi
,

which have a common solution by the CRT.
(13) (NZM 2.3.37) Let a1 = 3, ai+1 = 3ai . Describe this sequence mod 100.

Solution: The first observation to make is that φ(100) = φ(4)φ(25) = 2 · 20 = 40, so
340 ≡ 1 mod 100 by Euler’s Thm. Since our sequence consists of big powers of three, it is
natural to find which powers of 3 this is useful for. Since 34 = 81 = 2 · 40 + 1, we note that

33
4

≡ 3 mod 100

To see how to use this, begin to write some ai: a1 = 3, a2 = 33 = 27, a3 = 33
3

= 327, and
this is already to large to calculate unless you’ve got a good calculator, but continuing on,
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we have

a4 = 33
33

We know that 33
4 ≡ 3, and a4 is bigger than 33

4

, and they’re both powers of 33. This

means we can write a4 as some power of 33
4

, namely

a4 = 33
33

= (33
4

)3
33−4

This is maybe clearer if we write it as 33
k

= (33
4

)3
k−4

, which holds as long as a > 3. Now

we apply 33
4 ≡ 3 and get

a4 ≡ 33
33−4

= 33
23

So we were able to reduce 33
27

to 33
23

. Since 23 is still bigger than 3, we can do the same
again (with k = 23 in the above) a few more times to get

a4 ≡ 33
19

≡ · · · ≡ 33
3

mod 100

so actually a3 ≡ a4 mod 100. Naturally one hopes that this continues, i.e., all the ai for
i ≥ 3 are congruent. This is true, and how to prove it? The formula from before,

33
k

= (33
4

)3
k−4

,

which holds for k > 3, implies that we can repeatedly subtract 4 from the exponent of 33,
so if k ≡ k mod 4, where 0 ≤ k < 4 is the smallest nonegative residue of k mod 4, we have

33
k

≡ 33
k

mod 100

Now notice that an = 3an−1 = 33
an−2

, so we can replace an−2 here by its smallest non-
negative residue mod 4. But 32 ≡ 1 mod 4 by Euler, and so an ≡ 3 mod 4 for all n.
Thus

an = 3an−1 = 33
an−2 ≡ 33

3

mod 100

for n ≥ 3 (we need n ≥ 3 in order to be able to reduce the top exponent mod 4).
(14) Which of the following are ring homomorphisms?

(a) f : Z→ Z/2 given by f(n) = 0 if n is even and 1 if n is odd.
Solution: This is a ring map - it is a special case of the “reduction mod m” map
Z→ Z/m which we discussed in class (here m = 2).

(b) g : Z→ Z given by f(x) = nx, where n is some fixed integer.
Solution: This cannot be a ring map unless n = 1, since any ring map has to send 1
to 1. When n = 1, we just get the identity map, which is a homomorphism.

(c) E3 : Z[x]→ Z which sends a polynomial f(x) ∈ Z[x] to the integer f(3).
Solution: This is a ring map. Some would call this map “evaluation at 3”.

(d) Let M2(Z) be the set of all 2× 2 matrices with integer entries. h : M2(Z) is the trace

map, which sends a matrix

(
a b
c d

)
to a+ d.

Solution: This is not a ring map - it sends 1 ∈ M2(Z), which is just the identity
matrix, to 2 ∈ Z.

(15) Let R = Z[
√

5] be the ring consisting of elements of the form a + b
√

5, where a and b are

integers. Let S be the ring consisting of matrices of the form

(
a b
5b a

)
. Prove that R is

isomorphic to S.
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Solution: First we define a homomorphism f : R→ S by the formula

f(a+ b
√

5) =

(
a b
5b a

)
To see that this is a homomorphism, we must check:

f((a+ b
√

5)(c+ d
√

5)) = f((ac+ 5bd) + (ad+ bc)
√

5)

=

(
ac+ 5bd ad+ bc

5(ad+ bc) ac+ 5bd

)
=

(
a b
5b a

)(
c d

5d c

)
= f(a+ b

√
5)f(c+ d

√
5)

So f is multiplicative. The check for additivity is similar.
Finally, the element 1 in the ring R is 1 = 0

√
5, and 1 in the ring S is the 2× 2 identity

matrix. So the check that f sends 1 to 1 is as follows:

f(1 + 0
√

5) =

(
1 0

5 · 0 1

)
Now we have to check that this f is not just a homomorphism, but an isomorphism. This

means that it is one-to-one and onto, or equivalently, that it has an inverse. It is easier to

check it has an inverse, namely the map g : S → R which sends

(
a b
5b a

)
to a+ b

√
5.

(16) Find all ring homomorphisms from Z to Z/12.
Solution: Any ring map f must send 1 ∈ Z to 1 ∈ Z/12. For any integer n ∈ Z, we can

write n = 1+1+· · ·+1, and applying f gives f(n) = f(1+· · ·+1) = f(1)+f(1)+· · ·+f(1) =
1 + · · · + 1. This means that for any ring homomorphism out of Z, what it does to any
integer n is determined by the property f(1) = 1. Thus there is only one map Z → Z/12.
In fact, the argument shows that there is only one ring map Z→ R for any ring R!.


