Math 115, Summer 2012 Homework 2 Solution

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).
(1) (NZM 2.1.5) Write a single congruence that is equivalent to the pair of congruences $x \equiv 1$ $\bmod 4$ and $x \equiv 2 \bmod 3$.

Solution: The moduli are prime to each other, so we write one congruence in the new modulus which is the product of the two given moduli, namely 12 . If $x \equiv 1 \bmod 4$, then $x \equiv 1$ or 5 or $9 \bmod 12$. If $x \equiv 2 \bmod 3$, then $x \equiv 2$ or 5 or 8 or $11 \bmod 12$. Thus the only possibility $\bmod 12$ which reduces to the given two is $x \equiv 5 \bmod 12$.

Alt Sol'n with CRT: We've seen that the Chinese Remainder Theorem (which applies since $(4,3)=1$) can be expressed as saying that $\mathbb{Z} / 4 \times \mathbb{Z} / 3 \cong \mathbb{Z} / 12$, and under this isomorphism the element $(1,2)$ maps to $5 \in \mathbb{Z} / 12$.
(2) (NZM 2.1.22) Prove that $n^{6 k}-1$ is divisible by 7 if $(n, 7)=1$. Here k is any positive integer.

Solution: If n is prime to 7 , then $n^{6} \equiv 1 \bmod 7$, hence $n^{6 k} \equiv 1 \bmod 7$ for any $k \geq 1$. This means $7 \mid n^{6 k}-1$.
(3) Find an integer a such that $\left\{a, a^{2}, a^{3}, a^{4}\right\}$ is a reduced residue system $\bmod 5$.

Solution: This is called a primitive root mod 5. $a=2$ works, as does $a=3$, but $a=4$ does not. We will see soon how to count the number of $a \bmod 5$ for which this holds.
(4) Find the smallest positive integer x which is congruent to $32^{412} \bmod 7$.

Solution: We use Fermat's little Thm, which says in this case that since 32 is prime to $7,32^{6} \equiv 1 \bmod 7$. Since $412=68 \cdot 6+4$,

$$
32^{412}=\left(32^{6}\right)^{68} \cdot 32^{4} \equiv 1^{68} \cdot 4^{4}=16^{2} \equiv 2^{2}=4 \quad \bmod 7
$$

(5) (NZM 2.1.33) Show that $\left\{1^{2}, 2^{2}, 3^{2}, \ldots, m^{2}\right\}$ is not a complete residue system mod m if $m>2$.

Solution: It's not a complete residue system because for any $m>2$, both 1^{2} and $(m-1)^{2}$ are congruent to $1 \bmod m$. (This fails for $m=2$ since in this case $1=m-1$).
(6) (NZM 2.1.35) If n is a composite positive integer, show that $(n-1)!+1$ is not a power of n.

Solution: We can prove an even stronger result, which is a converse to Wilson's Theorem, namely if n is composite, $(n-1)!\not \equiv-1 \bmod n$. To see this, suppose that n has a prime factor p. Then $p<n-1$, and thus p appears as a factor in the product $(n-1)$!, which is therefore congruent to zero $\bmod p$. Hence it is not congruent to $-1 \bmod p$, and so cannot be congruent to $-1 \bmod n$, either. Thius shows that $(n-1)!+1$ is not even a multiple of n, much less a power of it.
(7) (NZM 2.1.40) If m is odd, show that the sum of all the elements of \mathbb{Z} / m is equal to zero.

Solution: The key is that m is odd, so there are an even number of nonzero elements in this ring. They pair up to give zero. More rigorously:

$$
\sum_{i=1}^{m} i=(1+(m-1))+(2+(m-2))+\cdots(m / 2+(m-m / 2))=m+m+\cdots+m \equiv 0 \quad \bmod m
$$

(8) (NZM 2.1.48) If r_{1}, \ldots, r_{p} and $r_{1}^{\prime}, \ldots, r_{p}^{\prime}$ are any two complete residue systems mod p, where p is a prime greater than 2 , show that the set $\left\{r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}, \ldots, r_{p} r_{p}^{\prime}\right\}$ is not a complete residue system $\bmod p$.

Solution: Suppose that the set $S=\left\{r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}, \ldots, r_{p} r_{p}^{\prime}\right\}$ forms a complete residue system $\bmod p$. Exactly one of the r_{i} is congruent to zero $\bmod p$, call it r_{j}, and exactly one of the r_{i}^{\prime} is congruent to zero $\bmod p$, call it r_{k}^{\prime}. If $j \neq k$, there are two elements of S congruent to zero mod p, so it's not a complete residue system. Since we assumed it was, we must have that $j=k$. Now we might as well reorder S so that $r_{1} \equiv r_{1}^{\prime} \equiv 0 \bmod p$. Then by Wilson's Thm, we have

$$
\prod_{i=2}^{p}\left(r_{i} r_{i}^{\prime}\right) \equiv-1 \quad \bmod p
$$

but also, splitting the product we have

$$
\prod_{i=2}^{p}\left(r_{i} r_{i}^{\prime}\right)=\prod_{i=2}^{p} r_{i} \prod_{i=2}^{p} r_{i}^{\prime} \equiv(-1)(-1) \equiv 1 \quad \bmod p
$$

since each of $\left\{r_{i}\right\}$ and $\left\{r_{i}^{\prime}\right\}$, with $2 \leq i \leq p$, forms a complete residue system. This is a contradiction, since $-1 \not \equiv 1 \bmod p$ unless $p=2$, and we assumed that $p>2$.
(9) (NZM 2.2.5d,e) Find all solutions of the congruences $57 x \equiv 87 \bmod 105$ and $64 x \equiv 83$ $\bmod 105$.

Solution: For the first one, we compute $(57,105)=3$. Since $3 \mid 87$, there is a solution which is unique $\bmod \frac{105}{3}=35$. We first divide the congruence through by the gcd, giving

$$
19 x \equiv 29 \quad \bmod 35
$$

To find the inverse of $19 \bmod 35$, we use div alg:

$$
\begin{aligned}
& 35=1 \cdot 19+16 \\
& 19=1 \cdot 16+3 \\
& 16=5 \cdot 3+1
\end{aligned}
$$

So
$1=16-5 \cdot 3=16-5(19-16)=-5 \cdot 19+6 \cdot 16=-5 \cdot 19+6(35-19)=6 \cdot 35-11 \cdot 19$
So reducing this mod 35 shows that -11 is inverse to $19 \bmod 35$. Thus

$$
x \equiv-11 \cdot 19 x \equiv-11 \cdot 29=-319 \equiv 31 \bmod 35
$$

The strategy for the second one is similar, and the answer is $x \equiv 62 \bmod 105$.
(10) (NZM 2.3.2) Find all integers x that satisfy all three congruences

$$
\begin{array}{ll}
x \equiv 1 & \bmod 3 \\
x \equiv 1 & \bmod 5 \\
x \equiv 1 & \bmod 7
\end{array}
$$

Solution: After noting that the moduli are relatively prime, we set $m=3 \cdot 5 \cdot 7=105$. We want inverses to $\frac{m}{m_{i}} \bmod m_{i}$, for $i=1,2,3$.

$$
\begin{aligned}
& \left(\frac{m}{m_{1}}\right)^{-1}=\left(\frac{105}{3}\right)^{-1}=35^{-1} \equiv(-1)^{-1}=-1 \quad \bmod 3 \\
& \left(\frac{m}{m_{2}}\right)^{-1}=\left(\frac{105}{5}\right)^{-1}=21^{-1} \equiv 1^{-1}=1 \quad \bmod 5 \\
& \left(\frac{m}{m_{3}}\right)^{-1}=\left(\frac{105}{7}\right)^{-1}=15^{-1} \equiv 1^{-1}=1 \quad \bmod 7
\end{aligned}
$$

So we set

$$
x=35 \cdot(-1) \cdot 1+21 \cdot 1 \cdot 1+15 \cdot 1 \cdot 1=1 \quad \bmod 105
$$

This implicitly gives all integer solutions: all others differ from 1 by a multiple of 105 , so the solution set is $\{\ldots,-104,1,106, \ldots\}$.
(11) (NZM 2.3.7) Determine whether the congruences $5 x \equiv 1 \bmod 6$ and $4 x \equiv 13 \bmod 15$ have a common solution. Find the solutions, if any exist.

Solution: The moduli are not pairwise prime, so we split each modulus into prime power factors and obtain a larger sytem of congruences as follows: $5 x \equiv 1 \bmod 6$ is equivalent to the two congruences $x \equiv 1 \bmod 2$ and $2 x \equiv 1 \bmod 3$. The other congruence, $4 x \equiv 13$ $\bmod 15$, is equivalent to the two $x \equiv 1 \bmod 3$ and $4 x \equiv 3 \bmod 5$. Out of these four new congruences, two are both $\bmod 3$, and they are inconsistent: If $x \equiv 1 \bmod 3$, then $2 x \equiv 2$, not 1 ,
(12) (NZM 2.3.19) Let m_{1}, \ldots, m_{r} be relatively prime in pairs. Assuming that each of the congruences $b_{i} x \equiv a_{i} \bmod m_{i}$ has a solution, prove that the congruences have a simultaneous solution (i.e., one x that satisfies all congruences at once).

Solution: This is just like the CRT, except now there's a coefficient on each x. But our assumption is that each congruence $b_{i} x \equiv a_{i} \bmod m_{i}$ has a solution, which we have seen can happen if and only if $g_{i}=\left(b_{i}, m_{i}\right)$ divides a_{i}. Divide through each congruence by g_{i}, giving

$$
\frac{b_{i}}{g_{i}} x \equiv \frac{a_{i}}{g_{i}} \quad \bmod \frac{m_{i}}{g_{i}}
$$

All the new moduli $\frac{m_{i}}{g_{i}}$ are still pairwise prime, and moreover, the coefficient v is prime to the modulus $\frac{m_{i}}{g_{i}}$, so it has a multiplicative inverse $\bmod \frac{m_{i}}{g_{i}}$, call it c_{i}. Multiplying each of these new congruences by this inverse gives a system of congruences of the form

$$
x \equiv \frac{a_{i}}{g_{i}} c_{i} \quad \bmod \frac{m_{i}}{g_{i}},
$$

which have a common solution by the CRT.
(13) (NZM 2.3.37) Let $a_{1}=3, a_{i+1}=3^{a_{i}}$. Describe this sequence mod 100.

Solution: The first observation to make is that $\phi(100)=\phi(4) \phi(25)=2 \cdot 20=40$, so $3^{40} \equiv 1 \bmod 100$ by Euler's Thm. Since our sequence consists of big powers of three, it is natural to find which powers of 3 this is useful for. Since $3^{4}=81=2 \cdot 40+1$, we note that

$$
3^{3^{4}} \equiv 3 \quad \bmod 100
$$

To see how to use this, begin to write some $a_{i}: a_{1}=3, a_{2}=3^{3}=27, a_{3}=3^{3^{3}}=3^{27}$, and this is already to large to calculate unless you've got a good calculator, but continuing on,
we have

$$
a_{4}=3^{3^{3^{3}}}
$$

We know that $3^{3^{4}} \equiv 3$, and a_{4} is bigger than $3^{3^{4}}$, and they're both powers of 3^{3}. This means we can write a_{4} as some power of $3^{3^{4}}$, namely

$$
a_{4}=3^{3^{3^{3}}}=\left(3^{3^{4}}\right)^{3^{3^{3}-4}}
$$

This is maybe clearer if we write it as $3^{3^{k}}=\left(3^{3^{4}}\right)^{3^{k-4}}$, which holds as long as $a>3$. Now we apply $3^{3^{4}} \equiv 3$ and get

$$
a_{4} \equiv 3^{3^{3^{3}-4}}=3^{3^{23}}
$$

So we were able to reduce $3^{3^{27}}$ to $3^{3^{23}}$. Since 23 is still bigger than 3 , we can do the same again (with $k=23$ in the above) a few more times to get

$$
a_{4} \equiv 3^{3^{19}} \equiv \cdots \equiv 3^{3^{3}} \quad \bmod 100
$$

so actually $a_{3} \equiv a_{4} \bmod 100$. Naturally one hopes that this continues, i.e., all the a_{i} for $i \geq 3$ are congruent. This is true, and how to prove it? The formula from before,

$$
3^{3^{k}}=\left(3^{3^{4}}\right)^{3^{k-4}}
$$

which holds for $k>3$, implies that we can repeatedly subtract 4 from the exponent of 3^{3}, so if $k \equiv \bar{k} \bmod 4$, where $0 \leq \bar{k}<4$ is the smallest nonegative residue of $k \bmod 4$, we have

$$
3^{3^{k}} \equiv 3^{3^{\bar{k}}} \quad \bmod 100
$$

Now notice that $a_{n}=3^{a_{n-1}}=3^{3^{a_{n-2}}}$, so we can replace a_{n-2} here by its smallest nonnegative residue $\bmod 4$. But $3^{2} \equiv 1 \bmod 4$ by Euler, and so $a_{n} \equiv 3 \bmod 4$ for all n. Thus

$$
a_{n}=3^{a_{n-1}}=3^{3^{a_{n-2}}} \equiv 3^{3^{3}} \quad \bmod 100
$$

for $n \geq 3$ (we need $n \geq 3$ in order to be able to reduce the top exponent $\bmod 4$).
(14) Which of the following are ring homomorphisms?
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z} / 2$ given by $f(n)=0$ if n is even and 1 if n is odd.

Solution: This is a ring map - it is a special case of the "reduction mod m " map $\mathbb{Z} \rightarrow \mathbb{Z} / m$ which we discussed in class (here $m=2$).
(b) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(x)=n x$, where n is some fixed integer.

Solution: This cannot be a ring map unless $n=1$, since any ring map has to send 1 to 1 . When $n=1$, we just get the identity map, which is a homomorphism.
(c) $E_{3}: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ which sends a polynomial $f(x) \in \mathbb{Z}[x]$ to the integer $f(3)$.

Solution: This is a ring map. Some would call this map "evaluation at 3 ".
(d) Let $M_{2}(\mathbb{Z})$ be the set of all 2×2 matrices with integer entries. $h: M_{2}(\mathbb{Z})$ is the trace map, which sends a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to $a+d$.
Solution: This is not a ring map - it sends $1 \in M_{2}(\mathbb{Z})$, which is just the identity matrix, to $2 \in \mathbb{Z}$.
(15) Let $R=\mathbb{Z}[\sqrt{5}]$ be the ring consisting of elements of the form $a+b \sqrt{5}$, where a and b are integers. Let S be the ring consisting of matrices of the form $\left(\begin{array}{cc}a & b \\ 5 b & a\end{array}\right)$. Prove that R is isomorphic to S.

Solution: First we define a homomorphism $f: R \rightarrow S$ by the formula

$$
f(a+b \sqrt{5})=\left(\begin{array}{cc}
a & b \\
5 b & a
\end{array}\right)
$$

To see that this is a homomorphism, we must check:

$$
\begin{aligned}
f((a+b \sqrt{5})(c+d \sqrt{5})) & =f((a c+5 b d)+(a d+b c) \sqrt{5}) \\
& =\left(\begin{array}{cc}
a c+5 b d & a d+b c \\
5(a d+b c) & a c+5 b d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a & b \\
5 b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
5 d & c
\end{array}\right) \\
& =f(a+b \sqrt{5}) f(c+d \sqrt{5})
\end{aligned}
$$

So f is multiplicative. The check for additivity is similar.
Finally, the element 1 in the ring R is $1=0 \sqrt{5}$, and 1 in the ring S is the 2×2 identity matrix. So the check that f sends 1 to 1 is as follows:

$$
f(1+0 \sqrt{5})=\left(\begin{array}{cc}
1 & 0 \\
5 \cdot 0 & 1
\end{array}\right)
$$

Now we have to check that this f is not just a homomorphism, but an isomorphism. This means that it is one-to-one and onto, or equivalently, that it has an inverse. It is easier to check it has an inverse, namely the map $g: S \rightarrow R$ which sends $\left(\begin{array}{cc}a & b \\ 5 b & a\end{array}\right)$ to $a+b \sqrt{5}$.
(16) Find all ring homomorphisms from \mathbb{Z} to $\mathbb{Z} / 12$.

Solution: Any ring map f must send $1 \in \mathbb{Z}$ to $1 \in \mathbb{Z} / 12$. For any integer $n \in \mathbb{Z}$, we can write $n=1+1+\cdots+1$, and applying f gives $f(n)=f(1+\cdots+1)=f(1)+f(1)+\cdots+f(1)=$ $1+\cdots+1$. This means that for any ring homomorphism out of \mathbb{Z}, what it does to any integer n is determined by the property $f(1)=1$. Thus there is only one map $\mathbb{Z} \rightarrow \mathbb{Z} / 12$. In fact, the argument shows that there is only one ring map $\mathbb{Z} \rightarrow R$ for any ring R !.

