Math 115, Summer 2012 Homework 2 Due Tuesday, July 3rd

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).

- (1) (NZM 2.1.5) Write a single congruence that is equivalent to the pair of congruences $x \equiv 1 \mod 4$ and $x \equiv 2 \mod 3$.
- (2) (NZM 2.1.22) Prove that $n^{6k}-1$ is divisible by 7 if (n,7)=1. Here k is any positive integer.
- (3) Find an integer a such that $\{a, a^2, a^3, a^4\}$ is a reduced residue system mod 5.
- (4) Find the smallest positive integer x which is congruent to 32^{412} mod 7.
- (5) (NZM 2.1.33) Show that $\{1^2, 2^2, 3^2, \dots, m^2\}$ is not a complete residue system mod m if m > 2.
- (6) (NZM 2.1.35) If n is a composite positive integer, show that (n-1)! + 1 is not a power of n.
- (7) (NZM 2.1.40) If m is odd, show that the sum of all the elements of \mathbb{Z}/m is equal to zero.
- (8) (NZM 2.1.48) If r_1, \ldots, r_p and r'_1, \ldots, r'_p are any two complete residue systems mod p, where p is a prime greater than 2, show that the set $\{r_1r'_1, r_2r'_2, \ldots, r_pr'_p\}$ is not a complete residue system mod p.
- (9) (NZM 2.2.5d,e) Find all solutions of the congruences $57x \equiv 87 \mod 105$ and $64x \equiv 83 \mod 105$.
- (10) (NZM 2.3.2) Find all integers x that satisfy all three congruences

$$x \equiv 1 \mod 3$$

$$x \equiv 1 \mod 5$$

$$x \equiv 1 \mod 7$$
.

- (11) (NZM 2.3.7) Determine whether the congruences $5x \equiv 1 \mod 6$ and $4x \equiv 13 \mod 15$ have a common solution. Find the solutions, if any exist.
- (12) (NZM 2.3.19) Let m_1, \ldots, m_r be relatively prime in pairs. Assuming that each of the congruences $b_i x \equiv a_i \mod m_i$ has a solution, prove that the congruences have a simultaneous solution (i.e., one x that satisfies all congruences at once).
- (13) (NZM 2.3.37) Let $a_1 = 3$, $a_{i+1} = 3^{a_i}$. Describe this sequence mod 100.
- (14) Which of the following are ring homomorphisms?
 - (a) $f: \mathbb{Z} \to \mathbb{Z}/2$ given by f(n) = 0 if n is even and 1 if n is odd.
 - (b) $g: \mathbb{Z} \to \mathbb{Z}$ given by f(x) = nx, where n is some fixed integer.
 - (c) $E_3: \mathbb{Z}[x] \to \mathbb{Z}$ which sends a polynomial $f(x) \in \mathbb{Z}[x]$ to the integer f(3).
 - (d) Let $M_2(\mathbb{Z})$ be the set of all 2×2 matrices with integer entries. $h: M_2(\mathbb{Z})$ is the trace map, which sends a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to a+d.
- (15) Let $R = \mathbb{Z}[\sqrt{5}]$ be the ring consisting of elements of the form $a + b\sqrt{5}$, where a and b are integers. Let S be the ring consisting of matrices of the form $\begin{pmatrix} a & b \\ 5b & a \end{pmatrix}$. Prove that R is isomorphic to S.
- (16) Find all ring homomorphisms from \mathbb{Z} to $\mathbb{Z}/12$.