Math 115, Summer 2012

Homework 2

Due Tuesday, July 3rd

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).
(1) (NZM 2.1.5) Write a single congruence that is equivalent to the pair of congruences $x \equiv 1$ $\bmod 4$ and $x \equiv 2 \bmod 3$.
(2) (NZM 2.1.22) Prove that $n^{6 k}-1$ is divisible by 7 if $(n, 7)=1$. Here k is any positive integer.
(3) Find an integer a such that $\left\{a, a^{2}, a^{3}, a^{4}\right\}$ is a reduced residue system $\bmod 5$.
(4) Find the smallest positive integer x which is congruent to $32^{412} \bmod 7$.
(5) (NZM 2.1.33) Show that $\left\{1^{2}, 2^{2}, 3^{2}, \ldots, m^{2}\right\}$ is not a complete residue system mod m if $m>2$.
(6) (NZM 2.1.35) If n is a composite positive integer, show that $(n-1)!+1$ is not a power of n.
(7) (NZM 2.1.40) If m is odd, show that the sum of all the elements of \mathbb{Z} / m is equal to zero.
(8) (NZM 2.1.48) If r_{1}, \ldots, r_{p} and $r_{1}^{\prime}, \ldots, r_{p}^{\prime}$ are any two complete residue systems $\bmod p$, where p is a prime greater than 2 , show that the set $\left\{r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}, \ldots, r_{p} r_{p}^{\prime}\right\}$ is not a complete residue system $\bmod p$.
(9) (NZM 2.2.5d,e) Find all solutions of the congruences $57 x \equiv 87 \bmod 105$ and $64 x \equiv 83$ $\bmod 105$.
(10) (NZM 2.3.2) Find all integers x that satisfy all three congruences

$$
\begin{array}{ll}
x \equiv 1 & \bmod 3 \\
x \equiv 1 & \bmod 5 \\
x \equiv 1 & \bmod 7
\end{array}
$$

(11) (NZM 2.3.7) Determine whether the congruences $5 x \equiv 1 \bmod 6$ and $4 x \equiv 13 \bmod 15$ have a common solution. Find the solutions, if any exist.
(12) (NZM 2.3.19) Let m_{1}, \ldots, m_{r} be relatively prime in pairs. Assuming that each of the congruences $b_{i} x \equiv a_{i} \bmod m_{i}$ has a solution, prove that the congruences have a simultaneous solution (i.e., one x that satisfies all congruences at once).
(13) (NZM 2.3.37) Let $a_{1}=3, a_{i+1}=3^{a_{i}}$. Describe this sequence $\bmod 100$.
(14) Which of the following are ring homomorphisms?
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z} / 2$ given by $f(n)=0$ if n is even and 1 if n is odd.
(b) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(x)=n x$, where n is some fixed integer.
(c) $E_{3}: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ which sends a polynomial $f(x) \in \mathbb{Z}[x]$ to the integer $f(3)$.
(d) Let $M_{2}(\mathbb{Z})$ be the set of all 2×2 matrices with integer entries. $h: M_{2}(\mathbb{Z})$ is the trace map, which sends a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to $a+d$.
(15) Let $R=\mathbb{Z}[\sqrt{5}]$ be the ring consisting of elements of the form $a+b \sqrt{5}$, where a and b are integers. Let S be the ring consisting of matrices of the form $\left(\begin{array}{cc}a & b \\ 5 b & a\end{array}\right)$. Prove that R is isomorphic to S.
(16) Find all ring homomorphisms from \mathbb{Z} to $\mathbb{Z} / 12$.

