Math 115, Summer 2012 Homework 1 Due Tuesday, June 26th

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).

- (1) Calculate the gcd of 312 and 45.
- (2) Find a pair of integers x, y such that 221x + 77y = 1
- (3) Find a pair of integers x, y such that 46x + 32y = -4
- (4) Explain why there are no integers x, y satisfying 198x + 780y = 9.
- (5) (NZM 1.2.6) Prove that the product of three consecutive integers is divisible by 6, and that the product of four consecutive integers is divisible by 24
- (6) (NZM 1.2.11) Prove that $4 / (n^2 + 2)$ for any n.
- (7) (NZM 1.2.15) Prove that if x and y are odd, then $x^2 + y^2$ is even but not divisible by 4.
- (8) (NZM 1.2.24) Prove that no integers exist satisfying x + y = 100 and (x, y) = 3.
- (9) (NZM 1.2.29) Let g and l be two positive integers, prove that the equations (x, y) = g, [x, y] = l have a solution if and only if g|l.
- (10) (NZM 1.2.52) Suppose that $2^n + 1 = xy$, where x, y > 1 are integers and n > 0. Show that for any positive integer a, $2^a|(x-1)$ if and only if $2^a|(y-1)$.
- (11) (NZM 1.3.6) Show that every positive integer n has a unique expression of the form $n = 2^r m$, with $r \ge 0$ and m an odd positive integer.
- (12) (NZM 1.3.10) Prove that every positive integer of the form 3k + 2 has a prime factor of the form 3m + 2 for some m.
- (13) (NZM 1.3.14) If a and b are integers, p is a prime, and $(a, p^2) = p$, $(b, p^3) = p^2$, compute (ab, p^4) and $(a + b, p^4)$.
- (14) (NZM 1.3.18) If (a, b) = c, prove that $(a^2, b^2) = c^2$.
- (15) (NZM 1.3.24) Prove that for any composite positive integer n, at least one of its prime factors must be $\leq \sqrt{n}$.
- (16) (NZM 1.3.36) Let $S = \{1, 2, ..., n\}$. Let 2^k be the largest power of 2 occurring in S. Prove that 2^k does not divide any other number in S, and then use this to prove that

$$\sum_{i=1}^{n} \frac{1}{i}$$

is not an integer, for any n > 1.

- (17) (NZM 1.3.42) If, for some integer n > 0, $2^n + 1$ is prime, prove that n is actually a power of 2 (in which case we call $2^n + 1$ a "Fermat prime").
- (18) Let R be the ring¹ $\mathbb{Z}[\sqrt{-11}]$, which consists of numbers of the form $a + b\sqrt{-11}$, where a and b are integers. Exhibit two distinct nontrivial factorizations (meaning neither of the factors is ± 1) of 15 in this ring. Thus this ring does not have unique factorization.

¹You don't need to know what a ring is to do this problem.