Math 115, Summer 2012

Homework 1

Due Tuesday, June 26th

NZM a.b.c refers to a problem in our text, 5th edition - these may differ slightly from the problems appearing in other editions, so use the version printed here to be safe).
(1) Calculate the gcd of 312 and 45.
(2) Find a pair of integers x, y such that $221 x+77 y=1$
(3) Find a pair of integers x, y such that $46 x+32 y=-4$
(4) Explain why there are no integers x, y satisfying $198 x+780 y=9$.
(5) (NZM 1.2.6) Prove that the product of three consecutive integers is divisible by 6 , and that the product of four consecutive integers is divisible by 24
(6) (NZM 1.2.11) Prove that $4 X\left(n^{2}+2\right)$ for any n.
(7) (NZM 1.2.15) Prove that if x and y are odd, then $x^{2}+y^{2}$ is even but not divisible by 4.
(8) (NZM 1.2.24) Prove that no integers exist satisfying $x+y=100$ and $(x, y)=3$.
(9) (NZM 1.2.29) Let g and l be two positive integers, prove that the equations $(x, y)=g$, $[x, y]=l$ have a solution if and only if $g \mid l$.
(10) (NZM 1.2.52) Suppose that $2^{n}+1=x y$, where $x, y>1$ are integers and $n>0$. Show that for any positive integer $a, 2^{a} \mid(x-1)$ if and only if $2^{a} \mid(y-1)$.
(11) (NZM 1.3.6) Show that every positive integer n has a unique expression of the form $n=2^{r} m$, with $r \geq 0$ and m an odd positive integer.
(12) (NZM 1.3.10) Prove that every positive integer of the form $3 k+2$ has a prime factor of the form $3 m+2$ for some m.
(13) (NZM 1.3.14) If a and b are integers, p is a prime, and $\left(a, p^{2}\right)=p,\left(b, p^{3}\right)=p^{2}$, compute $\left(a b, p^{4}\right)$ and $\left(a+b, p^{4}\right)$.
(14) (NZM 1.3.18) If $(a, b)=c$, prove that $\left(a^{2}, b^{2}\right)=c^{2}$.
(15) (NZM 1.3.24) Prove that for any composite positive integer n, at least one of its prime factors must be $\leq \sqrt{n}$.
(16) (NZM 1.3.36) Let $S=\{1,2, \ldots, n\}$. Let 2^{k} be the largest power of 2 occurring in S. Prove that 2^{k} does not divide any other number in S, and then use this to prove that

$$
\sum_{i=1}^{n} \frac{1}{i}
$$

is not an integer, for any $n>1$.
(17) (NZM 1.3.42) If, for some integer $n>0,2^{n}+1$ is prime, prove that n is actually a power of 2 (in which case we call $2^{n}+1$ a "Fermat prime").
(18) Let R be the ring $^{1} \mathbb{Z}[\sqrt{-11}]$, which consists of numbers of the form $a+b \sqrt{-11}$, where a and b are integers. Exhibit two distinct nontrivial factorizations (meaning neither of the factors is ± 1) of 15 in this ring. Thus this ring does not have unique factorization.

[^0]
[^0]: ${ }^{1}$ You don't need to know what a ring is to do this problem.

