
These problems are practice for the second exam, on rings and fields.

1. True or False

 (a) The canonical homomorphism \(\pi : R \to R/I \) is surjective.
 (b) Every homomorphism of rings is injective.
 (c) The element \(x \) is a unit in \(\mathbb{Q}[x]/(x^4 + 1) \).
 (d) There exists a homomorphism \(\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z} \).
 (e) If \(R \) is a unique factorization domain and \(I \) a proper ideal of \(R \), then \(R/I \) is a unique factorization domain.
 (f) If \(\sigma \in \text{Gal}(L : K) \), and \(\alpha \in L \) is a root of \(f \in K[x] \), then \(\sigma(\alpha) \) is a root of \(f \).
 (g) If \(R \) and \(S \) are domains, then \(R \times S \) is a domain.
 (h) Every algebraic field extension is finite.
 (i) \(\mathbb{Q}(i - \sqrt{7}) = \mathbb{Q}(i, \sqrt{-7} + 1) \).
 (j) The minimal polynomial of the extension \(\mathbb{Q} \subset \mathbb{Q}(e^{2\pi i/3}) \) is \(x^3 - 1 \).
 (k) If \(F \) is any field, there exists a homomorphism \(F \to \mathbb{C} \).
 (l) If \(K \subset L \) is a normal field extension of degree 4, then there exists exactly one intermediate subfield \(F \neq K, L \).
 (m) The polynomial \(3x^4 - 30x^2 + 10x + 15 \) is irreducible over \(\mathbb{Z} \).
 (n) If \(f : R \to S \) is a surjective ring homomorphism, and \(m \) a maximal ideal in \(S \), then \(f^{-1}(m) \) is a maximal ideal in \(R \).
 (o) There exists a homomorphism \(\mathbb{Q}[x]/(x^2 + 2x + 1) \to \mathbb{C} \).

2. (a) If \(R \) is a ring, say what it means for an element \(r \in R \) to be irreducible.
 (b) Give an example of an irreducible polynomial of degree larger than 2 in the ring \(\mathbb{Q}[x] \).
 (c) Let \(R \) be a domain and \(I = (f) \) a nonzero ideal. Prove that if \(I \) is prime, then \(f \) is irreducible.

3. (a) Let \(\alpha = \sqrt[3]{\sqrt{2} + \sqrt{3}} \), and consider the field extensions

 \[
 \mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2} + \sqrt{3}) \subset \mathbb{Q}(\alpha) \subset \mathbb{Q}(i, \alpha) = K
 \]

 Given that \([K : \mathbb{Q}] = 24\), determine \([\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2} + \sqrt{3})]\). Justify your answer.

 (b) Let \(\omega = \frac{-1 + i\sqrt{3}}{2} \), a cube root of 1. Consider the extensions \(\mathbb{Q} \subset \mathbb{Q}(\omega) \subset \mathbb{Q}(\sqrt[3]{7}, \omega) \). Let \(f \) and \(g \) be the automorphisms of \(\mathbb{Q}(\sqrt[3]{7}, \omega) \) defined by

 \[
 f: \begin{cases}
 \sqrt[3]{7} \mapsto \omega \sqrt[3]{7} \\
 \omega \mapsto \omega
 \end{cases}
 g: \begin{cases}
 \sqrt[3]{7} \mapsto \sqrt[3]{7} \\
 \omega \mapsto \omega^2
 \end{cases}

 Show that \(f \in \text{Gal}(\mathbb{Q}(\sqrt[3]{7}, \omega) : \mathbb{Q}(\omega)) \).

 (c) Find an element \(x \in \mathbb{Q}(\sqrt[3]{7}, \omega) \) such that \(f(g(x)) \neq g(f(x)) \).
(d) Using (d), and given that $[Q(\sqrt[3]{7}, \omega) : Q] = 6$, prove that $\text{Gal}(Q(\sqrt[3]{7}, \omega) : Q) \cong S_3$.

(e) Prove that $\text{Gal}(Q(\sqrt[3]{7}, \omega) : Q(\omega)) \cong \mathbb{Z}/3\mathbb{Z}$.

4. (a) For each of the following rings say, whether they are a field; domain; principal ideal domain; euclidean domain; unique factorization domain

i. $\mathbb{Z}[x]$

ii. $\mathbb{Q}[x]/(x^2 + x + 1)$

iii. $\mathbb{C}[x, y]$

(b) Define a principal ideal domain.

(c) Prove that if R is a principal ideal domain and I a prime ideal of R, then R/I is a principal ideal domain.

(d) Let $f : \mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z}$ be $f = g \circ h$, where $h : \mathbb{Z}[x] \to \mathbb{Z}$ is the evaluation map at -1 and $g : \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is the quotient map. Prove that $\ker f = (x + 1, x^2 + 1)$.

5. (a) State the (first) isomorphism theorem for rings.

(b) Consider the map $\phi : \mathbb{C}[x, y] \to \mathbb{C}[y]$ given by $\phi(p(x, y)) = p(y^2, y^3)$. Compute $\phi(x^2 + xy + y^2)$.

(c) Prove that $\text{im } \phi = \mathbb{C}[y^2, y^3] \subset \mathbb{C}[y]$.

(d) Prove that $\ker \phi$ is a prime ideal in $\mathbb{C}[x, y]$.

(e) Is $\text{im } \phi$ a unique factorization domain?