We solve \(T \mathbf{p}(x) = \lambda \mathbf{p}(x) \) for \(\lambda \) and \(\mathbf{p}(x) \).

Write \(\mathbf{p}(x) = ax^3 + bx^2 + cx + d \), so

\[
6ax^3 + 2bx^2 + 0x + 0 = \lambda ax^3 + \lambda bx^2 + \lambda cx + \lambda d
\]

\[
\Rightarrow \quad 6a = \lambda a \quad \Rightarrow \quad 2b = \lambda b \quad \Rightarrow \quad 0 = \lambda c \quad \Rightarrow \quad 0 = \lambda d
\]

If \(\lambda = 0 \), then \(a, b, c, d \) can be arbitrary, but \(a = b = 0 \),

so \(E_0 = \text{Span}(1, x) \).

If \(\lambda \neq 0 \), then \(a = d = 0 \). In the 2nd equation,

\[b = 0 \quad \text{or} \quad \lambda = 2. \]

If \(\lambda = 2 \), then \(b \) can be anything, but \(a = 0 \), so \(E_2 = \text{Span}(x^2) \).

If \(b \neq 0 \), then \(a \neq 0 \), since we want \(\mathbf{p}(x) \neq 0 \), so \(\lambda = 6 \),

and \(E_6 = \text{Span}(x^3) \).

Assume \(V \neq 0 \), or else there are no eigenvalues.

Then, if \(\lambda \) is an eigenvalue and \(\mathbf{v} \) a nonzero eigenvector,

we have \(T \mathbf{v} = \lambda \mathbf{v} \), so \(T \mathbf{v} = \lambda \mathbf{v} \Rightarrow \mathbf{0} = \lambda \mathbf{v} \) and

since \(\mathbf{v} \neq \mathbf{0} \), \(\lambda = 0 \).

This shows: if \(T \) has no eigenvalues, \(\mathbf{v} \) must be zero.

We must prove \(\lambda \) actually is an eigenvalue. But \(E_0 = \text{Null}(T) \),

and \(\text{Null}(T) \neq 0 \), since \(T \) is not invertible. If \(\mathbf{v} \)

were, \(T \mathbf{v} = \mathbf{0} \Rightarrow (T^{-1})^n \mathbf{T}^n = (T^{-1})^n \mathbf{0} \Rightarrow I = \mathbf{0} \), contradiction

(again using \(\mathbf{v} \neq \mathbf{0} \)).
Assume \(\lambda \) is an eigenvalue, with nonzero eigenvector \(\mathbf{v} \).

Then \(0 \leq \langle T\mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle = \lambda \langle \mathbf{v}, \mathbf{v} \rangle = \lambda \| \mathbf{v} \|^2 \)

so \(0 \leq \lambda \| \mathbf{v} \|^2 \). Since \(\| \mathbf{v} \|^2 > 0 \) (\(\mathbf{v} \neq \mathbf{0} \)),

we get \(0 \leq \lambda \).

Obviously \(\mathbb{R}^3 \) and \(\mathbb{R}^3 \) are invariant.

Looking at the factorization, we see that \(T \) is a 90° rotation around the z-axis, followed by projection to the xy-plane.

Thus any invariant subspace must be either the z-axis or contained in the xy-plane.

But the rotation in the xy-plane has no invariant subspaces besides the xy-plane and \(\mathbb{R}^3 \).

So the invariant subspaces are:

\[
\begin{align*}
0-D & \quad 1-D & \quad 2-D & \quad 3-D \\
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \quad z-axis & \quad xy-plane & \quad \mathbb{R}^3
\end{align*}
\]

(a) A rotation through 45° in \(\mathbb{R}^3 \) has no eigenvalues.

(b) \(\mathbb{R}^2 \) has no eigenvalues.

(c) The zero map on the zero space has no eigenvalues.

(b) The matrices

\[
\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\]

have eigenvalues, but cannot be diagonalized.

(c) See the last problem of HW 5.
If didn't make sense as originally written.
Shall write the basis as \((e_0, e_1, \ldots, e_n)\).

Pick any \(v, w \in V\) and write

\[
v = a_0 e_0 + a_1 e_1 + \cdots + a_{n-1} e_{n-1} + a_n e_n
\]
\[
w = b_0 e_0 + b_1 e_1 + \cdots + b_{n-1} e_{n-1} + b_n e_n
\]

Then

\[
\langle Tv, Tw \rangle = \langle a_n e_n + a_{n-1} e_{n-1} + \cdots + a_1 e_1 + a_0 e_0, b_n e_n + \cdots + b_0 e_0 \rangle
\]

\[
= \langle a_n e_n, b_n e_n \rangle + \cdots + \langle a_1 e_1, b_1 e_1 \rangle + \langle a_0 e_0, b_0 e_0 \rangle
\]

\[
+ \langle a_{n-1} e_{n-1}, b_{n-1} e_{n-1} \rangle + \cdots + \langle a_0 e_0, b_0 e_0 \rangle
\]

\[
= a_0 b_0 \langle e_0, e_0 \rangle + a_1 b_1 \langle e_1, e_1 \rangle + \cdots + a_n b_n \langle e_n, e_n \rangle
\]

\[
= a_0 b_0 + a_1 b_1 + \cdots + a_n b_n
\]

Compute similarly \(\langle v, v \rangle = \cdots = a_0 b_0 + \cdots + a_n b_n\).

Intuition:

In \(\mathbb{R}^2\):

\(T\) is a reflection, so it doesn't change lengths or angles, hence it preserves the inner product. In \(\mathbb{R}^3\):
(a) \[
\begin{align*}
\text{2. \ cases:} & \\
\text{(i) \ if } & v = 0, \\
& \phi_v(u) = \langle u, 0 \rangle = 0,
\end{align*}
\]
so \(\phi_v \) to the zero map \(\text{dim } V \to \mathbb{F} \),
and \(\text{Null } \phi_v = V \), so \(\text{dim } \text{Null } \phi_v = n \).

\(\text{(ii) if } v \neq 0, \text{ then } \phi_v(u) = \langle v, u \rangle = ||v||^2 \neq 0, \)
so \(\phi_v \) is surjective, hence
\[\text{dim } \text{Null } \phi_v = \text{dim } V - \text{dim } \text{Range } \phi_v \]
\[= n - \text{dim } \mathbb{F} = n - 1. \]

(b) Pick \(w \in U^\perp \), so \(w \perp u \) \(\forall u \in \text{Span } v. \)
In particular, \(w \perp v \), so \(\phi_v\big|_{U^\perp}(w) = \langle w, v \rangle = 0. \)
Thus \(\phi_v\big|_{U^\perp} \) is the zero map, since \(w \) was an arbitrary element of \(U^\perp \).

(c) Since \(T \) is an operator, \(T \) is invertible if and only if \(T \) is injective.
To show it’s injective, pick \(v \in \text{Null } T \), so \(Tv = 0. \)
Then \(||v|| = ||Tv|| = ||0|| = 0. \)

So \(||v|| = 0 \), hence \(v = 0 \), so \(\text{Null } T = \{0\}. \)