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Abstract. An alternative proof is given of optimal mapping properties in Lp spaces, up
to endpoints, for arbitrary Radon-like transforms involving integrals over one-dimensional
manifolds.

1. Introduction

1.1. Generalized Radon transforms. Let X,X? be open sets in smooth manifolds. Let
I ⊂ X ×X? be a C∞ submanifold of positive codimension, denote by π, π? the restrictions
to I of the natural projections of X ×X? onto X,X? respectively, and suppose that π, π?

are both submersions.
In this situation, in sufficiently small neighborhoods of any points x0 ∈ X, x?0 ∈ X? such

that (x0, x
?
0) ∈ I, the sets

(1.1) Mx = {x? : (x, x?) ∈ I}, M?
x? = {x : (x, x?) ∈ I}

are smooth manifolds of certain dimensions k, k? respectively. There are associated integral
operators

(1.2) Tf(x) =
∫
Mx

f dσx

where the measures σx are absolutely continuous with C∞ densities with respect to k-
dimensional measure on Mx, and depend smoothly on x in the natural sense. Then for
subsets E,E? of X,X? respectively, 〈T (χE?), χE〉 = µ(I ∩ (E × E?)) for some smooth
measure µ on I.

Let X,X? be equipped with positive measures having nonvanishing, smooth densities
with respect to some local coordinate system. Thus we may speak of Lebesgue spaces
Lp(X), Lq(X?). T then has a transpose T ∗, which is an operator of the same general form
as T , associated to the dual family of submanifolds M?

x? .
This paper presents an alternative proof, more accurately a partially alternative proof, of

a theorem of Tao and Wright [37]. In terms of the geometry of I, those authors characterized
the interior of the set of all ordered pairs (p, q) for which an operator T maps Lp to
Lq, provided that the manifolds Mx,M?

x? are one-dimensional (equivalently, X,X? have
equal dimensions and the dimension of I is one greater). Our analysis revolves around a
structural element of the problem which seems not to have been exploited in prior works.
One motivation is to remove certain losses which prevent the attainment of endpoints, that
is, pairs (p, q) of exponents on the boundary of the region for which an inequality might
hold. Endpoint inequalities are not established in this paper, however; to obtain these
will require additional independent refinements, on which work is underway. A second
motivation, more fundamental though more speculative, is the hope that further insight into
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this one-dimensional case may eventually contribute to progress on the higher-dimensional
problem. With this goal in mind we present alternative developments of some aspects of
the theory.

I am indebted to Betsy Stovall for extensive and invaluable help with the exposition.

1.2. Counting incidences. Let X,X? be sets, and suppose I, the set of incidences, to
be some prescribed subset of X ×X?. In various situations it is desired to find an upper
bound on the cardinality of I. Sometimes one is given infinite sets X,X?, I, and one seeks
to understand as a function of N,N? the maximum number of incidences in E×E?, where
E,E? are arbitrary subsets of X,X? respectively of cardinalities N,N?. The Szemerédi-
Trotter theorem [36], for instance, provides an upper bound in terms of N,N? for the
maximal number of incidences between N lines and N? points in R2. Our problem is
a continuum version of the general incidence counting problem, in which cardinality is
replaced by Lebesgue measure, and the incidence relation I has the structure of a smooth
manifold. The underlying problem is to relate differential geometric structure to extremal
bounds for incidences.

1.3. Lp-improving operators and curvature. One should think of X,X? as being suf-
ficiently small neighborhoods of x0, x

?
0 respectively; all these structures exist in certain

neighborhoods of x0, x
?
0, (x0, x

?
0). Throughout the paper we will work in such a small neigh-

borhood without explicitly saying so. Thus it is implicitly assumed that the measures σx
are supported near x0, that x is restricted to lie sufficiently close to x0 that the sets Mx

are indeed smooth manifolds, and so forth. In the case where X,X? are compact manifolds
without boundary, the type of question discussed in this paper reduces immediately to this
local case, via a partition of unity.

Definition 1.1. T is said to be Lp-improving near (x0, x
?
0) if there exist neighborhoods

U,U? of x0, x
?
0 respectively such that for any exponent p ∈ (1,∞) there exists q > p such

that for any family of measures σx having smooth densities, T maps Lp(U?) boundedly to
Lq(U).

A geometric criterion for T to be Lp-improving was established (in the special case
k = k?) in [11]. Moreover the following are mutually equivalent, with the same quantifiers
on U,U?, σx:

(1) T is Lp-improving.
(2) There exists at least one pair of exponents p < q for which T maps Lp to Lq.
(3) For all p ∈ (1,∞) there exists δ > 0 such that T maps Lp(U?) to the Sobolev space

Lpδ(U).
(4) For at least one p ∈ (1,∞) there exists δ > 0 such that T maps Lp(U?) to the

Sobolev space Lpδ(U).
(5) Several mutually equivalent curvature, or nonintegrability, conditions described in

[11],[34]. See Definition 2.5 below.
It is a fundamental problem to determine the optimal exponents q, δ as functions of p; this
problem includes both the local smoothing problem for the wave equation and (generalized
to mixed norms) the Kakeya problem as special cases. The simplistic analysis in [11] gives
poor estimates, even in comparatively simple examples.

1.4. Some prior work. One widely used method of analysis is based on L2 orthogonality.
In rough outline, T is decomposed into various pieces, precise microlocal L2 estimates are
derived for each summand, Lp 7→ Lq bounds are then obtained by interpolation of L2
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bounds with simple L1 7→ L1 and L1 7→ L∞ estimates, real interpolation is invoked, and
bounds are summed. See for instance [1], [12], [13], [14], [15], [18], [19], [20], [21], [29], [30],
[31], [32], [33], [34], [28] for works in this vein.

The question of regularity in Sobolev spaces is still poorly understood. For instance, for
the simple operator mapping functions in R3 to functions in R3 defined by convolution with
arc length measure on a bounded portion of a helix or the curve {(t, t2, t3)}, it remains an
open problem to determine for which p, δ the space Lp is mapped to Lpδ ; see [32], [27], and
[28] for significant progress in this direction.

Oberlin [24],[25] had analyzed convolution with arc length measure on the curves (t, t2, · · · , td)
in Rd for d = 3, 4 by arguments which did not involve L2 orthogonality, but relied on di-
mensional and numerological relations specific to those particular situations. Influential
papers of Bourgain [4] and Wolff [38],[39],[40] on the Kakeya maximal function and re-
lated operators underscored the fundamentally combinatorial nature of this whole circle of
questions.

The most direct precursors of the present paper were [6],[37],[9]. Christ [6] intro-
duced a general method, and employed it in conjunction with more specialized arguments
to analyze certain key particular operators. Tao and Wright [37] formulated in general
terms the relation between Lp 7→ Lq estimates and the geometry of I, in the case when
dimension (I) = 1 + dimension (X) = 1 + dimension (X?). They introduced a notion of
generic subsets, instrumental in overcoming the dependence of [6] on certain explicit for-
mulae. They reinterpreted certain sets as two-parameter Carnot-Carathéodory balls in I,
and recognized the simplifying role of a technical condition which we call weak compara-
bility. Christ and Erdoǧan [9] analyzed mixed Lebesgue norm estimates, again only for a
particular family of Radon-like transforms, combining [6] and the use of genericity with one
more ingredient, certain spatial localizations.

The present paper synthesizes these works by reorganizing [6] to incorporate the local-
izations of [9] in an improved and more fundamental way, relying heavily on the notions
of genericity and weak comparability from [37]. Although the main theorem is not new,
we hope that the analysis both clarifies the structure of the problem, and establishes a
foundation for further work, in particular for endpoint bounds in the real analytic case,
which are now under investigation.

1.5. Some notation. R+ = (0,∞). p, p? denote exponents in [1,∞] which are not neces-
sarily conjugate to one another. d, d? are respectively the dimensions of X,X?, and k, k?

are the dimensions of the submanifolds M,M?; our main result is restricted to the case
where k = k? = 1 and d = d?, which will be assumed from the last paragraph of §2.2
on. γ? denotes the mapping associated to the adjoint operator T ∗. I denotes the inci-
dence relation. |S| denotes the measure of a set S contained in either X, X?, or I, with
respect to fixed measures which have continuous densities that are strictly positive near
x0, x

?
0, (x0, x

?
0), respectively. χE denotes the characteristic function of a set E. A . B

signifies an inequality of the form A ≤ CB for some finite constant C, uniformly for all
A,B in some classes of quantities; these classes will be clear from the context. A ∼ B
means that A . B and B . A. Notation such as ρ : X ×R→ R means that the domain of
ρ is an appropriate open subset of X × R. q′ = q/(q − 1) denotes the exponent conjugate
to an exponent q.



4 MICHAEL CHRIST

2. Preliminaries and formulation of the main theorem

2.1. Weak comparability. As motivation consider the function F (x, y) = x4y2+x2 exp(−1/y2)
for 0 ≤ x, y ≤ 1. For any small δ > 0 and any C < ∞ there exists C ′ < ∞ such that
1 ≤ F (x,y)

x4y2
≤ C ′ whenever y ≤ Cxδ. Thus F is comparable in every such region y ≤ Cxδ to

a polynomial which is independent of C, δ, even though the constants bounding the ratio
do depend on C, δ.

Definition 2.1. Let N, c be positive real numbers. Two positive real numbers s, s? . 1
are said to be (N, c)–weakly comparable if s ≥ cs?N and s? ≥ csN .

In practice, N will be large and c will be small. We will sometimes simply write “weakly
comparable” without specifying N, c. A statement of the form “If s, s? are weakly compa-
rable then P” will always mean that for any N, c, P holds for any parameters s, s? which
are (N, c)– weakly comparable. If proposition P is an inequality, then it is to be understood
to hold with an implicit constant depending on N, c but not on s, s?.

2.2. Parametrized form. There exist C∞ functions γ : X×Rk → X? and γ? : X?×Rk? →
X such that Mx = {γ(x, t) : t ∈ Rk} and M?

x? = {γ?(x?, t) : t ∈ Rk?}, these are injective
functions of t for each x, x? respectively, and ∂γ/∂t, ∂γ?/∂t are everywhere of maximal
ranks k, k? respectively. Here t is restricted to sufficiently small open sets in Rk,Rk? . The
incidence relation takes the form

I = {(x, x?) ∈ X ×X? : ∃t : x? = γ(x, t)} = {(x, x?) ∈ X ×X? : ∃t : x = γ?(x?, t)}.

In these terms our generalized Radon transform may be expressed in suitable local co-
ordinates as

(2.1) Tf(x) =
∫

Rk
f(γ(x, t))η(x, t) dt.

Here x, γ(x, t) belong to Euclidean spaces Rd. The adjoint operator takes the same form

(2.2) T ∗g(x?) =
∫

Rk?
g(γ?(x?, s))η?(x?, s) ds.

Here η, η? are smooth, compactly supported functions. Since we are interested in upper
bounds in Lp spaces, we may always assume that η, η? are nonnegative.

We will always take f, g to be characteristic functions of Borel sets E,E?. By real inter-
polation theory, a restricted weak type bound of the form |〈T (χE), χE?〉| ≤ A|E|1/p|E?|1/p

?

for some finite constant A implies that T is bounded from Lq1 to Lq2 whenever q1 > p and
q2 <

p?

p?−1 . Thus we will work primarily with

(2.3) T (E,E?) = 〈T (χE?), χE〉 = 〈χE? , T ∗(χE)〉.

We may assume without loss of generality that T (E,E?), and hence |E|, |E?|, are strictly
positive.

A fundamental role [6] is played by two parameters.

Definition 2.2. The average numbers of incidences α, α? per point of E,E? respectively
are defined to be

(2.4) α =
T (E,E?)
|E|

, α? =
T (E,E?)
|E?|

.
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The Radon-like transform T is bounded from Lp to Lp for any p ∈ [1,∞], and therefore
since E,E? are subsets of bounded regions, T (E,E?) . |E|1/p|E?|1/p? whenever 1

p + 1
p? ≤ 1.

Thus we assume throughout the paper that

(2.5)
1
p

+
1
p?

> 1.

2.3. Iterated mappings and Jacobians. Associated to γ are iterated mappings Γn which
map X × Rn to X? for odd1 n and to X for even n, defined by Γ1(x, t) = γ(x, t) and

(2.6) Γn(x, t1, · · · , tn) =

{
γ(Γn−1(x, t1, · · · , tn−1), tn) if n > 1 is odd,

γ?(Γn−1(x, t1, · · · , tn−1), tn) if n is even.

These have of course certain domains, a point which will be consistently slurred over. There
are corresponding mappings Γ?n from X? × Rn to one of X,X?, obtained by interchanging
γ, γ? everywhere in the definition. This construction applies for any values of k, k?, the
only change beginning that Rn should be replaced by Euclidean space of dimension k +
k? + k + k? + · · · or k? + k + k? + k + · · · , where the sum extends over n terms. We will
often denote by τ the vector (t1, · · · , tn).

Γn parametrizes chains of points (x0, x1, · · · , xn) ∈ X × X? × X × X? × · · · such that
(xi, xi+1) ∈ I whenever i is even and (xi+1, xi) ∈ I whenever i is odd, and x0 = x. For
n = 2 such chains arise in the computation of the composition of T with its adjoint. For
n > 2 they were used in the analysis of generalized Radon transforms in [5]. A closely
related construction has been exploited by Baouendi, Ebenfelt, and Rothschild [2],[3] in
connection with complex analysis in several variables.

In the special case when the domain of Γn has the same dimension as its codomain,
associated to these are the Jacobian determinant

(2.7) J(x, τ) = det
(
∂Γd(x, τ)

∂τ

)
.

This has the analogue J?(x?, τ) = det
(
∂Γ?n(x?,τ)

∂τ

)
, provided again that the domain and

codomain of Γ?n have the same dimensions. This is in particular the case when n = d and
k = k? = 1. When the dimension of the domain exceeds the dimension of the codomain
then determinants of subJacobians are similarly defined.

Besides its smoothness, J has several fundamental properties. For the sake of simplicity,
and because our main theorem concerns only this case, we assume here and throughout the
remainder of the paper that k = k? = 1. Choose n = d or n = d? so that the dimension of
the codomain X or X? of Γn is n. Then firstly, J(x, 0) ≡ 0. Secondly, T is Lp-improving in
some neighborhood of x if and only if there exists β such that ∂βJ

∂τβ
(x, 0) 6= 0; in general there

is an analogous statement involving determinants of appropriate subJacobians. Thirdly,
J(x, τ) vanishes identically on certain canonical lower-dimensional sets; see Remark 11.7.
This last property will not be exploited in this paper, but will be essential in an analysis
of sharper endpoint estimates.

2.4. Canonical towers. We change notation slightly for the iterated mappings Γk origi-
nally defined in (2.6). For k = 1, for each z = (x, x?) ∈ I, define Γ1((x, x?), t1) = γ(x, t1)

1The necessity to distinguish between even and odd dimensions will plague the entire exposition.
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if d is odd, and Γ1((x, x?), t1) = γ?(x?, t1) if d is even. Then inductively define

(2.8) Γk+1((x, x?), t1, · · · , tk+1) =

{
γ(Γk((x, x?), t1, · · · , tk), tk+1) if d− k is even,
γ?(Γk((x, x?), t1, · · · , tk), tk+1) if d− k is odd.

Define s1 ∈ R so that Γ1((x, x?), s1) = x? if d is odd, and Γ1((x, x?), s1) = x if d is even.
Define Ω†1 = {t1 ∈ R1 : |t1 − s1| < α} if d is odd, and Ω†1 = {t1 ∈ R1 : |t1 − s1| < α?} if d is
even. Inductively define sets Ω†k ⊂ Rk and functions sk : Ω†k−1 → R by the equations

(2.9) Γk((x, x?), t1, · · · , tk−1, sk) =

{
x? if d− k is even
x if d− k is odd,

and

(2.10) Ω†k =
{

(t1, · · · , tk) ∈ Rk : |tk − sk(t1, · · · , tk−1)| <

{
α if d− k is even,
α? if d− k is odd.

}
Definition 2.3 (Canonical towers). Let z = (x, x?) ∈ I. The canonical tower Ω†(z, α, α?) ⊂
Rd is defined to be

Ω†(z, α, α?) = Ω†d.

These sets are special cases of towers, which will be discussed below.
In other words, we iterate γ, γ? beginning at either x or x?, depending on parity, but

consider only multi-times (t1, t2, · · · ) for which each of these iterates returns either within
distance cα of x?, or within distance cα? of x, as dictated by parity. This definition of Ω† is
coordinate-free, but awkward to work with. In §3.5 below we will introduce parametriza-
tions of γ, γ? under which Ω† becomes a Cartesian product of intervals [−α, α] and [−α?, α?].

Definition 2.4. For any z = (x, x?) ∈ I and 0 < α,α? . 1,

λ(z, α, α?) =
∫

Ω†(z,α,α?)
|J̃(x̃, τ)| dτ(2.11)

λ(α, α?) = inf
z∈I

λ(z, α, α?)(2.12)

where J̃ , x̃ = J, x if d is odd, and = J?, x? if d is even.

Lemma 2.1. Under the Lp-improving hypothesis, if d is odd then there exists a finite set
S of multi-indices such that for any parameters N, c, for any α, α? that are (N, c)–weakly
comparable, for all z = (x, x?) ∈ I sufficiently close to any point (x0, x

?
0),

(2.13) λ(z, α, α?) ∼
∑
β∈S

cβ(z)α(d+1)/2α?(d−1)/2α
P
j odd βjα?

P
j even βj .

Here βj are the components of β. The constants implicit in the inequalities expressed by
∼ depend on N, c, but S does not. For even d there is a corresponding formula, with
α(d+1)/2α?(d−1)/2 replaced by αd/2α?d/2 and J, x replaced by J?, x?.

This is proved by expanding J in Taylor series with respect to (r, r?) about (z, 0, 0),
approximating it by a Taylor polynomial of a very high degree depending on N , and in-
tegrating that polynomial in r, r? with (x, x?)-dependent coefficients over Ω,Ω†. Using
the fact that at least one coefficient in this expansion about (x0, x

?
0, 0, 0) is nonzero, one

finds that only a finite set S of monomials, independent of N, c, x, can make a nonnegligible
contribution, provided that r, r? are sufficiently small. Further details are left to the reader.
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As a consequence, if z ∈ I varies over a sufficiently small neighborhood of a point z0

then λ(z, α, α?) & λ(z0, α, α
?), whence λ(α, α?) ∼ λ(z0, α, α

?).

2.5. Vector fields and curvature. On I there exist pairs of smooth real vector fields
V, V ?, which are everywhere linearly independent, such that the integral curves of V are
the sets π−1({x}) for points x ∈ X, and the integral curves of V ? are the sets π?−1({x?})
for x? ∈ X?. Fix one such pair V, V ? for the remainder of the paper.

Definition 2.5. I possesses rotational curvature if and only if the Lie algebra generated
by V, V ? spans the tangent space to I at each of its points.

This condition has many equivalent formulations [11], and in particular is equivalent [11]
to T being Lp-improving. We assume it throughout this paper.

2.6. Balls. Two different kinds of “balls” enter naturally into the analysis. The first of
these are subsets of I and will be denoted B(z, r, r?), where z ∈ I and r, r? are small
positive numbers. B(z, r, r?) is the Carnot-Carathéodory ball of radius 1 associated to the
vector fields rV, r?V ?, that is, B(z, r, r?) is the set of all points ϕ(1) where ϕ : [0, 1] →
I varies over all Lipschitz continuous curves whose tangent vectors ϕ′(t) take the form
[a(t)rV + b(t)r?V ?](ϕ(t)) for almost every t ∈ [0, 1], with a2 + b2 ≤ 1. When z = (x, x?) we
will also write B(x, x?, r, r?).

The second families of “balls” are subsets of the two ambient manifolds X,X?. To any
(x, x?) ∈ I, and to any sufficiently small r, r? ∈ R+, are associated

B?(x, x?, r, r?) = π?(B(x, x?, r, r?)) ⊂ X? and B(x, x?, r, r?) = π(B(x, x?, r, r?)) ⊂ X.

These are Carnot-Carathéodory balls in a generalized sense. They can be described as all
points accessible via travel along certain vector fields, which are not finite in number but
depend smoothly on a one-dimensional control parameter; the traveler is allowed to flow
along one vector field, then change the parameter, then flow again, and so forth; but not
only is the total time of travel restricted by r, but also the total variation of the control
parameter is restricted by a second quantity, r?.

Sets equivalent to B,B?, described in different terms, underlie the discussion in [6].

Lemma 2.2. Let I be an incidence manifold possessing rotational curvature. Let N, c be
finite positive numbers. Then uniformly for every (x, x?) ∈ I and every r, r? . 1 which are
(N, c)–weakly comparable, the ball B = B(x, x?, r, r?) satisfies

r|π(B)| ∼ r?|π?(B)| ∼ |B|,(2.14)

|B(x, x?, r, r?)| ∼ Θ(x, x?, r, r?),(2.15)

where Θ(x, x?, r, r?) =
∑

β cβ(x, x?)rβ1r?β2 is a certain polynomial in (r, r?) whose coeffi-
cients cβ are nonnegative C∞ functions of x, x?. Θ is independent of N, c, but the constants
implicit in these inequalities may depend on N, c. If r = 0 or r? = 0 then Θ(x, x?, r, r?) = 0.
For any (x, x?) ∈ I there exists β such that cβ(x, x?) 6= 0.

The coefficients cβ can be expressed in terms of determinants of (d+ 1)-tuples of specific
elements of the Lie algebra generated by V, V ?. Lemma 2.2 is proved in §9.

2.7. Geometric ratios and inequalities. By Lemma 2.2,

(2.16)
|B|

|π(B)|1/p|π?(B)|1/p?
∼ r1/pr?1/p? |B|1−

1
p
− 1
p? .
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Assuming always that 1
p + 1

p? > 1, or equivalently that p+ p? > pp?, define positive, finite
exponents a(p, p?), a?(p, p?) by

(2.17) a =
p?

p? + p− pp?
, a? =

p

p+ p? − pp?
.

The mapping (p−1, p?−1) 7→ (a, a?) happens to be an involution.

Lemma 2.3. Suppose that I possesses rotational curvature, and that 1
p + 1

p? > 1. Let a, a?
be defined in terms of p, p? by (2.17). Then the following are equivalent:

(1) For every (N, c), for all (N, c)–weakly comparable radii 0 < r, r? . 1 and for all
z ∈ I, the balls B = B(z, r, r?) satisfy

(2.18) sup
B

|B|
|π(B)|1/p|π?(B)|1/p?

<∞.

(2) For every (N, c) there exists c′ > 0 such that

(2.19) |B(x, x?, r, r?)| ≥ c′rara??
for all (N, c)–weakly comparable pairs of positive numbers r, r? . 1.

(3) For any (N, c) there exists c′ > 0 such that

(2.20) λ(β, β?) ≥ c′βaβa?−1
?

for all (N, c)–weakly comparable β, β? . 1.

The equivalence of the first two conditions follows directly from the definitions and (2.16)
by algebra. The proof of their equivalence with the third condition will be completed in §9.

Definition 2.6. We say that Λ(p, p?) <∞ if (2.18) holds for each N, c.

Λ(p, p?) is not defined to be an actual number.

2.8. Formulation of the main theorem.

Theorem 2.4. Suppose that I possesses rotational curvature. Suppose that 1 < p̃ < q̃ <∞.
If Λ(p̃, q̃′) < ∞ for all N, c then T maps Lp boundedly to Lq whenever p > p̃ and q < q̃.
Conversely if 1 < p < q <∞ and T is of restricted weak type (p, q), then Λ(p, q′) <∞.

This theorem is due to Tao and Wright [37]. Recall that r′ = r/(r−1) denotes the exponent
conjugate to r.

In a sufficiently small neighborhood of z0, λ(α, α?) = minz λ(z, r, r?) is comparable to
λ(z0, α, α

?), as follows from (2.13). Therefore it suffices to consider only balls B(z, r, r?)
centered at z = z0 in defining Λ(p, p?). Thus if I ⊂ X ×X? is expressed as {z : F (z) = 0}
for a smooth Rd−1–valued function F , then Theorem 2.4 gives in principle a criterion for
an Lp → Lq inequality for T in terms of the Taylor expansion of F about z0.

An equivalent formulation of this upper bound for T is that whenever (p, p?) belongs to
the interior of the set of all pairs of exponents for which Λ is finite,

(2.21) T (E,E?) ≤ C|E|
1
p |E?|

1
p? .

Rather than (2.21), the analysis leads most directly to a bound of the form

(2.22) |E?| ≥ cε(αα?)ελ(α, α?)

for any Borel sets E,E? of finite, positive measures satisfying T (E,E?) > 0. (2.22) implies
(2.21) via Lemma 2.3 and real interpolation theory. The balls π(B), π?(B) provide pairs
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(E,E?) leading to lower bounds for T (E,E?)/|E|1/p|E?|1/p? , but do not enter explicitly
into the proof of the main bound (2.21).

3. Towers

3.1. The role of towers. Rather than seeking an upper bound on T (E,E?), we imagine
a lower bound to be given, and seek a corresponding lower bound on |E|1/p|E?|1/p? . It is
shown in [6] how a measurable set Ω and a smooth mapping Φ : Ω → E? are naturally
associated with this situation, where Ω has a certain structure including lower bounds on
its size in terms of |E|, |E?|, T (E,E?). Thus |E?| ≥ |Φ(Ω)|, for which it remains to establish
a suitable lower bound.

Here one faces a continuum version of the usual combinatorial issue of overcounting
due to the failure of Φ to be injective. This problem becomes acute when Ω has larger
dimension than does the target space for Φ. A more serious problem is that even for the
basic example of convolution with arc length measure on the curve (t, t2, · · · , td) in Rd for
d ≥ 4, the desired lower bound on |Φ(Ω)| is simply false, if Ω has the natural dimension d.
Those particular examples were treated in an ad hoc way in [6], which replaced a natural
space Ω of dimension d with an analogous set of dimension 2d−2, and analyzed the resulting
image set by exploiting explicit formulae unavailable in the general situation.

Tao and Wright [37] modified this construction so as to endow Ω with certain additional
structure, using sets Ω of arbitrarily high dimensions along the way. In the present paper a
version of this additional structure is obtained in a different way, and it is shown how the
required estimates still follow. One advantage is that only towers of dimension d are used.

3.2. Towers defined.

Definition 3.1. A tower Ω of height D and multi-dimension (k1, k2, · · · , kD) is a D-tuple
Ω = (Ω1, · · · ,ΩD) of Lebesgue measurable sets Ωn ⊂ Rk1 × · · · × Rkn such that for any
(t1, · · · , tn−1, tn) ∈ Rk1 × · · · × Rkn ,

(t1, · · · , tn−1, tn) ∈ Ωn ⇒ (t1, · · · , tn−1) ∈ Ωn−1.

If 1 < n ≤ D then to each τ ∈ Ωn−1 is associated the fiber

Fn(τ) = {t ∈ Rkn : (τ, t) ∈ Ωn}.
To unify notation set F1 = Ω1.

Definition 3.2. Ω has multisize ≥ (α1, · · · , αD) if each αn ∈ (0,∞), |F1| ≥ α1, and for all
n > 1 and almost every τ ∈ Ωn−1,

(3.1) |Fn(τ)| ≥ αn.

By deleting sets of measure zero we may ensure that this condition holds for every point τ ,
and henceforth will make this type of reduction without further comment.

In this paper only parameter space towers having one-dimensional fibers arise; kj = 1
for all j for the remainder of the discussion.

Definition 3.3. Let ` ∈ (0,∞)D. A tower Ω with one-dimensional fibers has multilength
` = (`1, · · · , `D) if each of its fibers Fj(τ) is contained in some interval of length ≤ `j . Its
multilength is said to be monotonic if `n ≤ `n+2 for all n ≤ D − 2.

Here C is any sufficiently large fixed constant. If Ω has multilength ` then it also has
multilength ˜̀ for every ˜̀ satisfying ˜̀

j ≥ `j for all j.
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Definition 3.4. A mapping tower which generates subsets of E,E? is a tower Ω together
with mappings {Φn : 1 ≤ n ≤ D} with domains Ωn such that

(3.2) Φn(Ωn) ⊂ E whenever d− n is odd, and Φn(Ωn) ⊂ E? whenever d− n is even.

In this paper, the mappings Φn will always take the form Φn(τ) = Γn(x, τ) for some
x ∈ E if d is odd, and Φn(τ) = Γ?n(x?, τ) for some x? ∈ E? if d is even, where Γ,Γ? are the
iterated mappings associated to I as described above. The points x, x? will not depend on
n.

3.3. Generic subsets. Let ε > 0 be a constant, sufficiently small for later purposes. Let
I ⊂ R1 be a bounded interval, and let E ⊂ I be a Lebesgue measurable set having positive
measure.

Definition 3.5. E ⊂ I is an (ε, δ)-generic subset of I if for any subinterval J ⊂ I of
measure |J | ≤ δ|I|,

(3.3) |E ∩ J | ≤ ε|E|.

Lemma 3.1. [37] For any ε > 0 there exists δ > 0 such that for any finite ρ > 0 and any
Lebesgue measurable set E ⊂ R1 having positive measure and having diameter ≤ ρ, there
exists an interval I such that E ∩ I is an (ε, δ)-generic subset of I and

(3.4) |E ∩ I| ≥ |E| · (|E|/ρ)ε.

We will sometimes speak simply of generic subsets, without specifying the parameters
ε, δ. For related alternative notions of genericity see [6],[9],[8],[10].

For the sake of completeness we indicate a proof.

Proof. Let δ < ε be a small positive number to be specified. Let E be given and fix an
interval I0 of length ρ containing E. If there exists no subinterval J ⊂ I0 of length δ|I0|
satisfying |E∩J | ≥ ε|E| then E is generic in I0. Otherwise choose some such interval J , and
call it I1. Repeat this process, generating a sequence of intervals I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ · · ·
satisfying |In| = δn|I0|, and |E ∩ In| ≥ εn|E|.

This process cannot continue indefinitely; εn|E| ≤ |E ∩ In| ≤ |In| = δn|I0|, so n ≤
ln(|I0|/|E|)

ln(ε/δ) . Define I = In for the first integer n for which no subinterval J with the required
property exists. It remains only to verify that |E ∩ In| ≥ |E| · (|E|/ρ)ε. We have n ≤
ln(ρ/|E|)/ ln(ε/δ), so

|E ∩ In| ≥ |E|εln(ρ/|E|)/ ln(ε/δ)) = |E| · (|E|/ρ)γ

where γ = ln(1/ε)
ln(ε/δ) . Choosing δ < ε sufficiently small yields (3.4). �

We’ll need a version with parameters. Given a measurable set E ⊂ RK × R1, set Ey =
{t ∈ R1 : (y, t) ∈ E}. Suppose that Ey has diameter ≤ ρ, for all y ∈ RK . Then there
exist measurable functions y 7→ a(y), b(y) such that for almost every y ∈ RK , the interval
Iy = [a(y), b(y)] satisfies |Ey ∩ Iy| ≥ c|Ey| · (|Ey|/ρ)ε, and Ey ∩ Iy is an (ε, δ)-generic
subset of Iy. This can be achieved by making arbitrary choices in the above stopping-time
construction in any reasonable manner.

Definition 3.6. A tower Ω with multilength (`1, · · · , `D) is generically arranged if for all
j, each fiber Fj(τ) is a generic subset of some interval of length ∼ `j .
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More precisely, Fj is required to be an (ε0, δ)-generic subset of an appropriate interval,
where the exponent ε0 is to be specified later in the proof, and δ = δ(ε0) is then chosen
as in Lemma 3.1. The intervals in question are required to depend measurably on τ . By
an interval of length ∼ `j we mean an interval whose length lies in the interval (C−1`j , `j),
where C is some sufficiently large but fixed constant.

3.4. Centrality. There are unique C∞ mappings ρ : X × R → R and ρ? : X? × R → R
satisfying the relations

(3.5) γ?(γ(x, t), ρ(x, t)) ≡ x, γ(γ?(x?, t), ρ?(x?, t)) ≡ x?.

Definition 3.7. A mapping tower Ω of multilength ` = (`1, · · · , `D) with one-dimensional
fibers is centered if both of the following conditions hold. (i) For any 1 ≤ j ≤ D − 2, for
almost every Rj × R1 3 (τ, t) ∈ Ωj+1, the fiber Fj+2(τ, t) is contained in the interval of
length `j+2 centered at either ρ(Φj(τ), t) or ρ?(Φj(τ), t), as dictated by parity. (ii) If d
is odd there exists x ∈ X such that for every τ ∈ Ω1, the fiber F2(τ) is contained in the
interval of length `2 centered at ρ(x, τ). If d is even there exists x? ∈ X? such that for
every τ ∈ Ω1, the fiber F2(τ) is contained in the interval of length `2 centered at ρ?(x?, τ).

This notion of centrality is essentially that of Tao and Wright [37]. As defined here,
centrality by itself means practically nothing, since it can be achieved simply by choosing
each `j to be sufficiently large. However we will work with towers which are also generically
arranged, thus imposing a reasonably tight upper bound on `.

Here and elsewhere, the phrase “as dictated by parity” refers to the alternating character
of the tower and mappings; Φn(Ωn) ⊂ X for all odd2 d− n and Φn(Ωn) ⊂ X? for all even
d− n.

3.5. A special parametrization. Choose C∞ functions Π : X → R1 and Π? : X? → R1

such that for all x, x?, t, d
dtΠ ◦ γ

?(x?, t) 6= 0 and d
dtΠ

? ◦ γ(x, t) 6= 0. More precisely, these
are defined in sufficiently small neighborhoods of a point (x0, x

?
0) ∈ I and for t sufficiently

close to some t0, t?0, respectively.
Because the maps (x, t) 7→ (x,Π?(γ(x, t))) and (x?, t) 7→ (x?,Π(γ?(x?, t))) are local

diffeomorphisms, the mappings γ, γ? can be smoothly reparametrized so that

(3.6) Π?(γ(x, t)) ≡ t and Π(γ?(x?, t)) ≡ t

for all x, x?, t. We henceforth assume (3.6).
For any x, t1, t2, ρ(Γ1(x, t1), t2) = t3 is the unique solution of Γ3(x, t1, t2, t3) = γ(x, t1).

Given (3.6), this equation is equivalent to t3 = t1. Indeed,

t3 = Π?(γ(Γ2(x, t1, t2), t3)) = Π?(Γ3(x, t1, t2, t3)) = Π?(γ(x, t1)) = t1.

This statement, together with the dual statement in which the roles of γ, γ? are reversed,
means that with (3.6) in force, a mapping tower Ω is centered if and only if there exists t0
such that for any τ = (t1, · · · , tD) ∈ ΩD,

(3.7) |tj−2 − tj | . `j for all 2 ≤ j ≤ D.

Under this parametrization, the canonical towers Ω†(z, α, α?) introduced in Definition 2.3
take the simple form

(3.8) Ω†(z, α, α?) = · · · × [−α?, α?]× [−α, α]× [−α?, α?]× [−α, α]

2The reverse parity convention would be equally reasonable.
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with d factors in the Cartesian product; the leftmost factor is [−α?, α?] if d is even, and is
×[−α, α] if d is odd.

4. Spatial localization and orthogonality

After some preparations, we discuss in §4.3 a form of Lp orthogonality which will be at
the core of the analysis.

4.1. A crude localization. Our purpose here is to reduce matters to the case where α, α?

are weakly comparable. A loss of an arbitrarily small power of αα? will be incurred in the
process.

Let sets E,E?, and consequently parameters α, α?, be given; we may always assume that
T (E,E?) > 0. Let 0 < δ1 ≤ (4d)−1 be a small parameter, which eventually will be taken
to depend on the exponent ε in the main theorems; δ1 will tend to zero as ε→ 0.

Via a preliminary partition of unity we may restrict attention to an arbitrarily small
neighborhood of a single point in I. Since the derivatives of γ(x, t), γ?(x?, t) with respect
to t are nonzero, both α, α? are bounded by a constant multiple of the diameter of such a
neighborhood. Thus we may, and will, assume from the outset that α, α? are smaller than
any fixed constant.

Partition X,X? into cubes Q,Q? of sidelength (αα?)δ1 . Since T (E,E?) =
∑

Q,Q? T (E ∩
Q,E? ∩ Q?) and there are O((αα?)−dδ1) cubes Q and O((αα?)−dδ1) cubes Q?, there exist
Q0, Q

?
0 such that T (E ∩ Q0, E

? ∩ Q?0) & (αα?)2dδ1T (E,E?). Fix such Q0, Q
?
0 and set

Ẽ = E ∩Q0 and Ẽ? = E? ∩Q?0. Thus

(4.1) T (Ẽ, Ẽ?) ≥ c(αα?)2dδ1T (E,E?).

To Ẽ, Ẽ? are associated new parameters α̃ = T (Ẽ, Ẽ?)/|Ẽ| and α̃? = T (Ẽ, Ẽ?)/|Ẽ?|.

Lemma 4.1. Let E,E? be Borel sets such that T (E,E?) > 0. Then the associated subsets
Ẽ, Ẽ? satisfy

(4.2) (αα?)2 . min(α̃, α̃?) ≤ max(α̃, α̃?) . (αα?)δ1

In particular, there exist N, c, depending only on δ1, such that α̃, α̃? are (N, c)–weakly
comparable.

Proof. For any x ∈ X, T (χQ?0)(x) ≤ C|{t : γ(x, t) ∈ Q?0}| ≤ C(αα?)δ1 because ∂γ(x, t)/∂t
never vanishes. Therefore T (χE?∩Q?0)(x) ≤ T (χQ?0)(x) ≤ C(αα?)δ1 , and consequently

α̃ = T (E ∩Q0, E
? ∩Q?0)/|E ∩Q0| ≤ |E ∩Q0|−1

∫
E∩Q0

T (χQ?0) ≤ C(αα?)δ1 .

The same reasoning applies to α̃?, so max(α̃, α̃?) . (αα?)δ1 .
On the other hand,

α̃ & (αα?)2dδ1T (E,E?)/|Ẽ| ≥ (αα?)2dδ1T (E,E?)/|E| = (αα?)2dδ1α ≥ (αα?)1+2dδ1 ≥ (αα?)2

since α? ≤ 1. The same applies to α̃?, so min(α̃, α̃?) & (αα?)2. �
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4.2. Finer localizations. Given n ∈ Z, R1 may be partitioned (up to a discrete set which
will be ignored) as the union of all dyadic intervals of lengths 2n. This induces a partition
of X, up to null sets, as the union of the inverse images of these dyadic intervals under Π.
The same goes for X?,Π?. Denote these partitions by X? = ∪iX?

n,i, X = ∪iXn,i.
For any x ∈ X and any interval I ⊂ R define γ(x, I) = {γ(x, t) : t ∈ I} ⊂ X?, and define

γ?(x?, I) ⊂ X analogously for x? ∈ X?.
Let C ≥ 1 be arbitrary. For any interval I ⊂ R satisfying |I| ≤ C2n and any x ∈ X,

there are at most C ′ indices i for which γ(x, I)∩X?
n,i is nonempty; C ′ is independent of n.

The corresponding assertion holds for X,Π, γ?.
We will work with localized operators

T̃ f(x) =
∫
Ix

f(γ(x, t)) dt

where each interval Ix has length Between 2n−1 and 2n, and {(x, y) ∈ I : y ∈ γ(x, Ix)} is
Borel measurable. Particular families of intervals Ix will be constructed in §5. Let Borel
measurable subsets E ⊂ X,E? ⊂ X? be given. Partition E? ⊂ X? as ∪iE?i , where

(4.3) E?i = E? ∩X?
n,i.

Define associated subsets Ei ⊂ E by

(4.4) Ei = {x ∈ E : ∃t ∈ Ix : γ(x, t) ∈ E?i };

the definitions of Ei, E?i are not symmetric, but we will also use the analogous definitions
with the roles of X,X? interchanged.

Each point x ∈ E satisfying T (chiE?)(x) > 0 belongs to at least one of these sets Ei,
and no point belongs to more than three. Thus uniformly in n,E,E?, the bilinear form T̃
associated to the localized operator T̃ satisfies

(4.5) T̃ (E,E?) ∼
∑
i

T̃ (Ei, E?i ).

4.3. An orthogonal decomposition due to localization. By a bilinear form we mean
an expression T (E,E?), acting on pairs of Borel sets E ⊂ X, E? ⊂ X?, associated to some
linear operator T : L∞(X?) → L1(X) by T (E,E?) =

∫
E T (χE?). Here, as elsewhere, χE?

denotes the characteristic function of E?. It is assumed that f ≥ 0⇒ T (f) ≥ 0.

Proposition 4.2. Let p, p? ∈ (1,∞), and suppose that 1
p + 1

p? > 1, with strict inequality.
Let T̃ be a bilinear form for which

(4.6) AT̃ = sup
E,E?
|T̃ (E,E?)| · |E|−1/p|E?|−1/p?

is finite, where the supremum is taken over all measurable sets having finite, positive mea-
sures. Then for any families {Ei}, {E?i } of subsets of X,X? respectively, such that no point
of E belongs to Ei for more than 3 indices i, and likewise no point of E? belongs to E?i for
more than 3 indices i,

(4.7)
∑
i

T̃ (Ei, E?i ) ≤ C max
i

( |Ei|
|E|
· |E

?
i |

|E?|

)δ
·AT̃ |E|

1/p|E?|1/p?

for certain C, δ ∈ R+ which depend only on p, p?.
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Consequently if T̃ is localized in the sense (4.5), then a pair of sets E,E? can realize the
extremal situation for the inequality (4.6), up to a bounded factor, only when E,E? are
nearly equal to single components Ei, E?i .

Proof. Choose a pair of exponents r, r? ∈ (1,∞) satisfying 1
r + 1

r? = 1, 1
r <

1
p and 1

r? <
1
p? .

Set δ = 1
p −

1
r , δ′ = 1

p? −
1
r? , both of which are strictly positive. Then∑

i

T̃ (Ei, E?i ) ≤
∑
i

AT̃ |Ei|
1/p|E?i |1/p

?

≤ AT̃ max
i

(
|Ei|δ|E?i |δ

′)∑
i

|Ei|1/r|E?i |1/r
?

≤ AT̃ max
i

(
|Ei|δ|E?i |δ

′)(∑
i

|Ei|
)1/r(∑

i

|E?i |
)1/r?

≤ CAT̃ max
i

(
|Ei|δ|E?i |δ

′)|E|1/r|E?|1/r?
= CAT̃ max

i

(
|Ei|
|E|

)δ ( |E?i |
|E?|

)δ′
|E|1/p|E?|1/p? .

�

5. Construction of a mapping tower

5.1. The setup. Define

(5.1) A = A(p, p?) = sup
E,E?
T (E,E?)|E|−1/p|E?|−1/p? ,

the supremum being taken over Borel sets having strictly positive measures. A(p, p?) is an
element of (0,+∞].

We aim to show that A(p, p?) is finite, under the hypothesis of Theorem 2.4 that there
exist q < p, q? < p? such that Λ(q, q?) < ∞. The main step will be to show that there
exists a finite constant A† = A†(p, p?) such that if A(p, p?) is finite, then for any pair of
measurable sets E,E?,

(5.2) T (E,E?) > 1
2A|E|

1/p|E?|1/p? ⇒ T (E,E?) ≤ A†|E|1/p|E?|1/p? .

Moreover, A† will depend only on geometric information encoded by the incidence manifold
I, not in any way on A. It follows that A ≤ A†, provided that A is finite. The finiteness
assumption can be removed in at least two distinct ways; see §8.

5.2. The algorithm’s output. We will specify an algorithm whose inputs are the inci-
dence manifold I together with arbitrary Borel subsets E ⊂ X and E? ⊂ X? satisfying
T (E,E?) > 1

2A(p, p?)|E|1/p|E?|1/p? , and whose output consists of sets with the following
properties.

Proposition 5.1. Let p, p? ∈ (1,∞). Suppose that A(p, p?) < ∞. Then for any ε0, ε > 0
there exist c,N, δ > 0 with the following property. Let E ⊂ X, E? ⊂ X? be arbitrary Borel
sets satisfying T (E,E?) > 1

2A(p, p?)|E|1/p|E?|1/p?. Let α, α? be the average numbers of
incidences (2.4) per point of E,E?, respectively. Then there exists a nested sequence of
measurable sets

(5.3) E × E? ⊃ E(d) × E?(d) ⊃ E(d−1) × E?(d−1) ⊃ · · · ⊃ E(1) × E?(1) := E[ × E?[
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such that E(d), E?(d) are contained in cubes of sidelengths ≤ (αα?)Cε, and

(5.4) T (E[, E
?
[ ) ≥ c(αα?)εT (E,E?).

The average numbers of incidences α[, α?[ associated to E[, E?[ are (N, c)–weakly comparable.
Furthermore there exist sets Fn(x) ⊂ R1 whenever d − n is even and x ∈ E(n), and

Fn(x?) ⊂ R1 whenever d− n is odd and x? ∈ E?(n), such that

d− n even⇒ γ(x, t) ∈ E?(n) for all x ∈ E(n), t ∈ Fn(x),(5.5)

d− n odd⇒ γ?(x?, t) ∈ E(n) for all x? ∈ E?(n), t ∈ Fn(x?),(5.6)

and

(5.7) |Fn(x)| ≥ c(αα?)εα for even d− n, and |Fn(x?)| ≥ c(αα?)εα? for odd d− n.

Moreover for each n there exists a single bounded interval In such that Fn(y) is an (ε0, δ)–
generic subset of In for each y ∈ E(n) when d − n is even, and for each y ∈ E?(n) when
d− n is odd. Each In has length 2mn where the exponents mn satisfy

(5.8) mn−2 ≤ mn for all n ≥ 3.

The constants c, C depend on I, but neither on A(p, p?) nor on E,E?.

Since E[ ⊂ E and E?[ ⊂ E
?, (5.4) together with the hypothesis T (E,E?) > 1

2A|E|
1/p|E?|1/p?

force

|E[| ≥ cε(αα?)ε|E| and |E?[ | ≥ cε(αα
?)ε|E?|

α[ ≥ cε(αα?)εα and α?[ ≥ cε(αα?)εα?.

Propositioin 5.1 is proved in §§5.3–5.4.

5.3. Preparation for the first stage. Let E,E? be any two Borel sets satisfying T (E,E?) >
1
2A(p, p?)|E|1/p|E?|1/p? . Let δ0, δ1, ε0 > 0 be small constants, chosen sufficiently small to
satisfy constraints which will be specified, in principle, later in the proof. In particular, we
will require that δ1/δ0 is sufficiently small, and that δ0 ≤ ε0.

Localize E,E? to cubes Q,Q? of sidelengths ≤ (αα?)δ1 as detailed in §4.1 to obtain
subsets E] = E ∩Q and E?] = E? ∩Q? for which

(5.9) T (E], E?] ) ≥ c(αα?)2dδ1T (E,E?).

Since T (E,E?) > 1
2A|E|

1/p|E?|1/p? ≥ 1
2A|E]|

1/p|E?] |1/p
?
, (5.9) forces |E]| ≥ (αα?)2dpδ1 |E|

and |E?] | ≥ (αα?)2dp?δ1 |E?|. The associated average numbers of incidences

α] = |E]|−1T (E], E?] ), α?] = |E?] |−1T (E], E?] )

thus satisfy

(5.10) cα(αα?)Cδ1 ≤ α] ≤ c′α(αα?)−Cδ1 and cα?(αα?)Cδ1 ≤ α?] ≤ c′α?(αα?)−Cδ1

for certain constants c, c′ which depend on δ1, and a constant C which depends only on
d, p, p?. Moreover α], α?] are (N, c) weakly comparable by Lemma 4.1, where N, c depend
only on the choice of δ1. The sets E \E] and E? \E?] are now discarded; the sets E(d), E?(d)

constructed below will be subsets of E], E?] and hence subsets of Q,Q?, respectively.
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5.4. The first stage. The first stage of the construction takes as input (E], E?] ), and
outputs a pair (E(d) ⊂ E], E?(d) ⊂ E?] ). Define

Ẽ(d) = {x ∈ E] : T (χE?] )(x) ≥ 1
2α]}.

Then T (Ẽ(d), E?] ) ≥ 1
2T (E], E?] ). E(d) will eventually be defined to be a certain subset of

Ẽ(d).
For x ∈ Ẽ(d), define F̃d(x) = {t : γ(x, t) ∈ E?] }; thus |F̃d(x)| ≥ cα]. For each x ∈ Ẽ(d),

apply Lemma 3.1 to obtain a set Fd(x) ⊂ F̃d(x) and an interval Ix ⊂ R1 satisfying |Ix| .
(αα?)δ1 , such that

(5.11) |Fd(x)| & |F̃d(x)|1+δ0 ≥ cαδ0] |F̃d(x)|,

and Fd(x) is an (δ0, δ)-generic subset of Ix. Here δ = δ(δ0) is the quantity appearing
in Lemma 3.1. Since δ0 ≤ ε0, Fd(x) is (ε0, δ)-generic. All such choices are to be made
measurably. Here, as elsewhere, the value of c changes from one occurrence to the next.
Partition Ẽ(d) = ∪i∈ZE

(d)
i , where

E
(d)
i = {x ∈ Ẽ(d) : 2i−1 ≤ |Ix| < 2i}.

Since |Ix| ≥ |Fd(x)| & α1+δ0
] , the pigeonhole principle guarantees that there exists md ∈ Z

satisfying cα1+δ0
] ≤ 2md , such that

(5.12) T (E(d)
md
, E?] ) &

T (E], E?] )
log(1/α])

& αδ0] T (E], E?] ).

We work henceforth only with E]] = E
(d)
md , discarding the rest of E].

Partition R1 as a union of dyadic intervals Ji = [i2md , (i + 1)2md), and set E?i = {x? ∈
E? : Π?(x?) ⊂ Ji−1∪Ji∪Ji+1}. Then E?] = ∪iE?i , and no point of E?] belongs to more than
three sets E?i . Let T̃ , T̃ be respectively the localized operator and bilinear form associated
to the family of intervals {Ix} as in §4.2, related to one another by T̃ (E , E?) =

∫
E T̃ (χE?).

Since
T̃ (χE?)(x) ∼ |Fd(x)| & αδ0] |F̃d(x)| ∼ αδ0] T (χE?] )(x) for all x ∈ E]] ⊂ E],

(5.12) with the substitution of the definition E]] = E
(d)
md implies

(5.13) T̃ (E]], E?] ) & (α]α?] )
2δ0T (E], E?] )

Express E]] = ∪iEi as in (4.4): Ei = {x ∈ E : ∃t ∈ Ix : γ(x, t) ∈ E?i }. No point belongs
to more than 3 of the sets Ei. Then T̃ (E]], E?i ) = T̃ (Ei, E?i ) for all i and consequently

(5.14) T (E]], E?] ) ≤
∑
i

T̃ (Ei, E?i ).

Now the orthogonality discussed in §4.3 comes into play. Let c0 be a small positive
constant, to be specified momentarily. If constants C1, c1 are chosen to be sufficiently large
and small respectively, then by (4.7) and (5.13), either

(5.15) T (E]], E?] ) ≤ c0(α]α?] )
3δ0A(p, p?)|E]|1/p|E?] |1/p

?

or there exists at least one index i for which

(5.16) |Ei| ≥ c1(α]α?] )
C1δ0 |E]| and |E?i | ≥ c1(α]α?] )

C1δ0 |E?] |.
We will show momentarily that (5.15) cannot hold, so (5.16) must.
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Now for any x ∈ Ei,

T (χE?i )(x) ≥ T̃ (χE?i )(x) & αδ0T (E?] )(x) & α1+δ0
] .

Therefore T (Ei, E?i ) & α1+δ0
] |Ei| and consequently

(5.17) T (Ei, E?i ) ≥ c(α]α?] )Cδ0T (E], E?] ).

Choose any one such index i, and define

(5.18) E(d) = Ei and E?(d) = E?i .

Stage one is then complete.
If (5.15) were to hold then by definition of A(p, p?),

T (E,E?) ≤ C(αα?)−Cδ1(α]α?] )
−2δ0T (E]], E?] )

≤ c1C(αα?)−Cδ1(α]α?] )
(3−2)δ0A(p, p?)|E]|1/p|E?] |1/p

?

≤ c1C(αα?)−Cδ1(αα?)(1−Cδ1)δ0A(p, p?)|E|1/p|E?|1/p?

< 1
2A(p, p?)|E|1/p|E?|1/p?

since α, α? . 1, provided that δ1/δ0 and c1 are sufficiently small. (5.15) thus contradicts
the hypothesis that T (E,E?) > 1

2A(p, p?)|E|1/p|E?|1/p? .
Note that the factors (α]α?] )

Cδ0 in (5.16) and (5.17) can be replaced by (αα?)C
′δ0 for

some constant C ′, by (5.10). Thus

|E(d)| ≥ c(αα?)Cδ0 |E]| and |E(d)?| ≥ c(αα?)Cδ0 |E?] |

T (Ei, E?i ) ≥ c(αα?)Cδ0T (E], E?] ).

This concludes the first stage of the construction.
What has been gained by all this is not only that for each x ∈ E(d), a large subset of

{t ∈ R : γ(x, t) ∈ E?(d)} is a generic subset of an interval I, but also, crucially for our
analysis, that X? has been replaced by π?−1(Ji−1 ∪ Ji ∪ Ji+1), and that I is linked to this
subset in a specific way.

5.5. Subsequent stages of the construction. Stage k takes as input a pair (E(d−k+2), E?(d−k+2)),
and outputs a pair (E(d−k+1), E?(d−k+1)). The roles of X,X? and all associated quantities
alternate with each stage. New constants ck, Ck appear, and are chosen to be sufficiently
small and large, respectively, relative to quantities chosen at earlier stages, so that sets
E(d−k+1), E?(d−k+1) are constructed. This procedure can be repeated an arbitrary finite
number of times, but we need do so only d times.

Built into the construction are the relation

(5.19) mk−2 ≤ mk for all 3 ≤ k ≤ d

and the nesting property En+1 × E?(n+1) ⊃ E(n) × E?(n).

5.6. Definition of Ω. The sets constructed in Proposition 5.1 supply the data for a map-
ping tower, which we next describe.

Proposition 5.2. Suppose that A(p, p?) < ∞. Let E,E? be Borel sets with T (E,E?) >
1
2A(p, p?)|E|1/p|E?|1/p?. Let α, α? be the average numbers of incidences per point of E,E?,
respectively. Then for any ε > 0 there exist N, c and a mapping tower Ω which generates
subsets of E,E?, is central, is generically arranged, has monotonic multilength, and has
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multisize (α1, · · · , αd) where αn ≥ c(αα?)εα if d− n is even, and αn ≥ c(αα?)εα? if d− n
is odd. Moreover αm, αn are (N, c)–weakly comparable for all m,n.

To begin the construction of Ω, define αn = T (E(n), E?(n))/|E(n)| and α?n = T (E(n), E?(n))/|E(n)?|.
The sets E(1), E?(1) are nonempty, since T (E(1), E?(1)) & (αα?)Cδ0T (E,E?) > 0. Choose
a point y ∈ E(1) if d is odd, and y ∈∈ E?(1) if d is even. y will remain fixed for the rest of
the proof.

Consider the case where the ambient dimension d is even. Then y ∈ E?(1). There exist
a Borel set F1(y) ⊂ R1, and an interval Iy of length ∼ 2m1 which contains F1(y), such that
|F1(y)| & α1, F1(y) is a generic subset of Iy, and γ?(y, t) ∈ E(2) for all t ∈ F1(y). Define
Ω1 = F1(y). Set Φ1(t) = γ?(y, t); Φ1(Ω1) ⊂ E(2) ⊂ E.

Each point γ?(y, τ) with τ ∈ Ω1 belongs to E(2), and consequently there are a Borel set
F2(Φ1(τ)) ⊂ R1, and an interval I of length ∼ 2m2 which contains F2(Φ1(τ)), such that
|F2(Φ1(τ))| & α2, F2(Φ1(τ)) is a generic subset of I, and γ(Φ1(τ), t) ∈ E?(3) for all t ∈
F2(Φ1(τ)). Define

Ω2 = {(τ, t) ∈ Ω1 × R1 : t ∈ F2(Φ1(τ))},

Φ2(τ, t) = γ(Φ1(τ), t) ∈ E?(3) ⊂ E? for (τ, t) ∈ Ω2.
(5.20)

Continue in this way, constructing Ωn by ascending induction on n for 1 ≤ n ≤ d. Ω
has multisize & (α1, · · · , αd). Define its multilength to be ` = (2m1 , · · · , 2md). Since
mn ≤ mn+2 for all n, this multilength is monotonic.

When d is odd, the only change is that the roles of E,E? are reversed at the first stage
n = 1, and hence also at all subsequent stages.

Certainly Φn(Ωn) is contained in E if d − n is odd and in E? if d − n is even, so Ω
generates subsets of E,E?. By construction, Ω is generically arranged and has monotonic
multilength. Proposition 5.1 guarantees that Ω has large multisize, in the sense that for all
n

(5.21)
(αα?)Cδ0α . αn . (αα?)−Cδ0α if d− n is even

(αα?)Cδ0α? . α?n . (αα?)−Cδ0α? if d− n is odd.

Lemma 5.3. The tower Ω is centered.

Proof. This is merely a matter of unraveling notation. Consider the case where d is even.
We will first show that if (t1, t2, t3) ∈ Ω3 then |t1 − t3| . `3 = 2m3 .

There is a certain interval J3 ⊂ R1 of length ∼ `3 such that Π(E(3)) ⊂ J3. Likewise
there is an interval J1 of length ∼ `1 ≤ `3 such that Π(E(1)) ⊂ J1. Since E(1) ⊂ E(3), J1

intersects the longer interval J3.
Since (t1, t2, t3) ∈ Ω3, γ?(y, t1) ∈ E(1); since Π(γ?(y, t1)) ≡ t1 we have t1 ∈ J1. Likewise

Γ?3(y, t1, t2, t3) ∈ E(3), and since Γ?3(y, t1, t2, t3) = γ?(Γ?2(y, t1, t2), t3)), necessarily t3 ∈ J3.
This forces |t1 − t3| . `3.

The corresponding inequalities |tj−2 − tj | . `j for j = 4, · · · , d and the corresponding
restriction on t2, as well as the case where d is odd, are treated in the same way except for
notational changes. �

6. Lower bounds for polynomials restricted to towers

We seek a lower bound on |E?|, in order to establish (2.22), and now have Φd(Ωd) ⊂ E?.
In §7 we will establish a lower bound for |Φd(Ωd)| in terms of

∫
Ωd
|det(DΦd)|. The present
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section focuses on such integrals, relating them to
∫

Ω†(z,β,β?) |det(DΦd))| for appropriate
z, β, β?; Ω†(z, β, β?) was defined in Definition 2.3. Centrality, genericity, and monotonicity
properties of Ωd all come into play.

6.1. A property of polynomials.

Lemma 6.1. Let D ∈ Z+. There exists ε > 0 such that for any polynomial Q of degree
≤ D in one real variable, any δ > 0, and any (ε, δ)-generic subset S of any bounded interval
I,

(6.1)
∫
S
|Q| & |S|

|I|

∫
I
|Q| ∼ |S|max

x∈I
|Q(x)|.

Moreover under the same hypotheses, if J ⊂ I are nested intervals, and if Q vanishes at
some point in J , then

(6.2)
|I|
|J |

max
J
|Q| . max

I
|Q| . (|I|/|J |)D max

J
|Q|.

The constants in these inequalities depend only on D, δ.

The routine proof is left to the reader.

6.2. Polynomials on towers.

Lemma 6.2. For any N < ∞ there exists ε > 0 with the following property. Let δ > 0
and let Ω be any centered parameter space tower of height D. Suppose moreover that Ω
has monotonic multilength (`1, · · · , `D), and that for each n, for each τ ∈ Ωn−1, the fiber
Fn(τ) = {t ∈ R1 : (τ, t) ∈ Ωn} is an (ε, δ)-generic subset of an interval of length comparable
to `n. Then there exists c > 0 such that for any polynomial P : RD → R of degree N ,

(6.3) |{τ ∈ ΩD : |P (τ)| ≥ c sup
t∈ΩD

|P (t)|}| ≥ c|ΩD|.

c depends on D,N, δ but not on otherwise on P , Ω.

Proof. If P has degree ≤ N and I is any bounded interval, then for any δ > 0 it is possible
to choose N or fewer subintervals Ji ⊂ I, each of length δ|I|, such that |P (s)| ≥ c(δ) supI |P |
for all s ∈ I \ ∪iJi. To do this, express P as a product of linear factors, discard any factors
corresponding to real or complex zeros lying at distance & |I| from I, and choose each Ji
to be centered at the real part of one of the remaining zeros. Details are left to the reader.

Suppose further that E is an (ε, δ)-generic subset of such an interval I. Then |E ∩ Ji| ≤
ε|E| for each subinterval Ji. Therefore |E ∩ (I \ ∪iJi)| ≥ 1

2 |E|, provided that ε ≤ 1/2N .
Consequently |P (s)| & supI |P | on a subset of E having measure comparable to the measure
of E. This is the case D = 1 of the lemma.

It suffices to prove the conclusion of the lemma for P 2. There exist s, s̃ ∈ R such that
for any n, for any τ ∈ Ωn−1, Fn(τ) is an (ε, δ)-generic subset of an interval I(τ) of length
`n, which is centered at a point within distance C`n of s if n is odd, and of s̃ if n is even.
Let Jn denote the interval of length C ′`n centered at s if n is odd, and at s̃ if n is even;
choose C ′ sufficiently large relative to C to guarantee that I(τ) ⊂ Jn for all τ ∈ Ωn−1.

Suppose that D is even; the case of odd D will follow from the same reasoning with small
changes of notation. For any τ ∈ ΩD−1, P 2(τ, t) & `−1

D

∫
JD
P 2(τ, s) ds for all t in a subset

of FD(τ) having measure comparable to that of FD(τ), as shown two paragraphs above.
The right-hand side is comparable to sups∈I(τ) P

2(τ, s), which we have already shown to
be comparable to sups∈FD(τ) P

2(τ, s). Moreover,
∫
JD
P 2(τ, s) ds is a polynomial in τ , of
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degree less than or equal to the degree of P 2. Therefore to conclude the proof it suffices to
reason by induction on D, applying the induction hypothesis to the tower (Ω1, · · · ,ΩD−1)
of height D − 1, and the polynomial τ 7→ `−1

D

∫
JD
P 2(τ, s) ds in one fewer variable. �

Continue to assume that γ, γ? have been parametrized so that (3.6) holds: Π(γ(x, t)) ≡
t and Π?(γ?(x?, t)) ≡ t. Let Ω be a centered, generically arranged mapping tower of
height d, with multisize ≥ (α1, · · · , αd) and monotonic multilength ≥ (`1, · · · , `d). Let
τ = (τ1, · · · , τd) be an arbitrary element of Ω and define the special towers Ω†(ρ1, ρ2)
consisting of all points (t1, · · · , td) ⊂ Rd such that |tj − τ1| ≤ ρ1 whenever j is odd, and
|tj − τ2| ≤ ρ2 whenever j is even.

Lemma 6.3. Let N ∈ N. Then there exist c, c′ > 0 such that for any polynomial P of
degree ≤ N and any towers Ω,Ω† of height d as described above,

(6.4) sup
Ωd

|P | ≥ c sup
Ω†d(`1,`2)

|P |.

Consequently

(6.5)
∫

Ωd

|P (t)| dt &
∏

n>2even

αn
α2
·
∏

n>1odd

αn
α1
·
∫

Ω†d(α1,α2)
|P (t)| dt.

The first conclusion follows from the same reasoning as in the proof of Lemma 6.2, taking
into account the fact that a fiber Fn has measure & αn and that αn & αk where k ∈ {1, 2}
has the same parity as n. Then by (6.3),∫

Ωd

|P (t)| dt ∼ |Ωd| sup
Ωd

|P | & |Ωd|· sup
Ω†d(`1,`2)

|P | & |Ωd|· sup
Ω†d(α1,α2)

|P | ≥ |Ωd|
|Ω†(α1, α2)|

∫
Ω†(α1,α2)

|P |,

and (6.5) follows by substituting for the ratio of |Ωd| to |Ω†d(α1, α2)|.

6.3. Comparison with canonical towers.

Lemma 6.4. Suppose that I possesses rotational curvature. Then there exists C <∞ such
that for any mapping tower Ω and mapping Φ constructed via the algorithm specified in §5,

(6.6)
∫

Ωd

|det(DΦ)| & (αα?)Cδ0
∫

Ω†(x,x?,(αα?)Cδ0α,(αα?)Cδ0α?)
|det(DΦ)|.

Here c, C depend on the constants N, c in the definition of weak comparability.

Proof. By the construction, all αn are weakly comparable to α, α? as well. Moreover αn &
(αα?)Cδ0α1 whenever n is odd, and αn & (αα?)Cδ0α2 whenever n is even.

Consider first the case where the Jacobian determinant J = det(DΦ) is a polynomial.
Then by (6.5),∫

Ωd

|J | &
∏

n>2 even

αn
α2

∏
n>1 odd

αn
α1

∫
Ω†(x,x?,α1,α2)

|J | & (αα?)Cdδ0
∫

Ω†(x,x?,α1,α2)
|J |,

for certain points x ∈ E, x? ∈ E?. And clearly∫
Ω†(x,x?,α1,α2)

|J | & (αα?)Cδ0
∫

Ω†(x,x?,α(αα?)Cδ0 ,α?(αα?)Cδ0 )
|J |,

since α1, α2 & α, α? up to factors of (αα?)Cδ0 . The constants in these inequalities may
be taken to be independent of the polynomial J , so long as its degree remains uniformly
bounded.
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In the general case where J is merely a C∞ function, the result follows from the crude
localization introduced in §4.1, by expanding J as a Taylor polynomial of fixed high degree
K plus remainder. Indeed, the integral of the remainder is O(αα?)K ; if K is sufficiently
large, this is negligible relative to

∫
Ω†(x,x?,α,α?) |J |, which, under the curvature hypothesis,

is bounded below by a constant multiple of some positive power of αα?. �

The small argument in the preceding paragraph explains the fundamental role played by
polynomials of bounded degree throughout this theory.

7. Lower bound for |Φ(Ωd)|

We next establish a lower bound for |Φ(Ωd)|, for general mappings Φ and towers Ωd. The
analysis is quite simple when Φ is a polynomial.

7.1. The polynomial case. Suppose temporarily that there exist coordinates and parametriza-
tions by which γ, γ? are expressed as polyomials. Then Φ and its Jacobian determinant
J = det(∂Φ/∂τ) are likewise polynomials. By the curvature hypothesis, J is not identically
zero as a function of τ ; see [11].

By Bezout’s theorem, there exist m < ∞, depending only on the degree of J and the
ambient dimension d, and an algebraic subvariety Z ⊂ X = Rd such that any point y /∈ Z
has at most m pre-images in Rd under Φ. Thus

(7.1) |E?| ≥ |Φ(Ωd)| ≥ m−1

∫
Ωd

|J(τ)| dτ.

7.2. The general smooth case. Bezout’s theorem does not apply directly when I is
merely a C∞ manifold satisfying possessing rotational curvature, so a more elaborate ar-
gument is required. The following lemma yields the same lower bound for |Φ(Ωd)| as in the
polynomial case. Its many hypotheses will be satisfied in the eventual application.

Lemma 7.1. Denote by Q the closed unit cube in Rd. Consider a family F of C2 mappings
Φ : Q → Rd. Let JΦ = detDΦ denote the Jacobian determinant of Φ and define JΦ =
maxτ∈Q |JΦ(τ)|.

Suppose that there exist numbers N <∞, c0 > 0, and C <∞ such that for all Φ ∈ F
(i) ‖Φ‖C2 ≤ C.
(ii)JΦ 6= 0 for all Φ ∈ F , but not necessarily with any uniform lower bound.
(iii) For each Φ ∈ F there exists a polynomial mapping Ψ : Q → Rd, whose components all
have degrees ≤ N , such that

(7.2) ‖Φ−Ψ‖C2(Q) ≤ c0J 2
Φ.

Let there also be given constants c1, c2 ∈ R+ and a collection S of subsets Ω ⊂ Q such
that for every polynomial P : Rd → R of degree ≤ Nd,

(7.3)
∣∣{τ ∈ Ω : |P (τ)| ≥ c1 sup

t∈Q
|P (t)|}

∣∣ ≥ c2|Ω|.

If the constant c0 is sufficiently small, depending only on N, d, then there exists c =
c(d,N,C, c1, c2) > 0 such that for all Φ ∈ F and Ω ∈ S

(7.4) |Φ(Ω)| ≥ c
∫

Ω
|JΦ| ∼ |Ω|JΦ.

Note the exponent 2 on the right-hand side of (7.2).
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Proof. By a constant we will mean a positive quantity which depends only on the allowed
quantities d,N,C, c1, c2. Let Φ,Ω be given and choose a polynomial mapping Ψ, of degree
not exceeding N , satisfying the stated conditions. Let JΨ = maxτ∈Q |JΨ(τ)|. If c0 is chosen
to be small relative to the constant C in hypothesis (i), then it follows that ‖Ψ− Φ‖C2 ≤
c0J 2

Φ is much smaller than JΦ. In particular, 1
2JΦ ≤ JΨ ≤ 2JΦ.

By (7.3) there exists a measurable subset ω ⊂ Ω satisfying |ω| ≥ c2|Ω|, such that for all
τ ∈ ω, |JΨ(τ)| ≥ c1JΨ. If c0 is sufficiently small it follows that for all τ ∈ ω, |JΨ(τ)| ≥ c3JΦ

and |JΦ(τ)| ≥ c3JΦ, for a certain constant c3.
There exists a constant c4 such that for any x̄ ∈ ω, both Φ,Ψ are injective on the ball

B(x̄, 4c4d
1/2JΦ). This follows from an inspection of standard proofs of the inverse function

theorem (see for instance [5]).
Partition Rd, except for a subset of measure zero, into cubes Qj of sidelengths c4JΦ.

Denote by Q∗j the ball of radius (c5 +c4d
1/2)JΦ whose center equals the center of Qj , where

c5 is to be specified below. Then

(7.5) |Φ(Ω ∩Qj)| ≥ |Φ(ω ∩Qj)| =
∫
ω∩Qj

|JΦ| & JΦ|ω ∩Qj |,

because the restriction of Φ to Qj is injective if Qj intersects ω.
If Φ were globally injective, we could complete the proof by summing over j. It clearly

suffices to show, as a substitute, that there exists a constant m such that for almost every
y ∈ Rd, y belongs to Φ(ω ∩Qj) for at most m distinct indices j.

Discard all Qj which do not intersect ω. Since Ψ is of bounded degree and is injective
on each Qj , it follows from Bezout’s theorem that no y ∈ Rd can belong to Ψ(ω ∩Q∗j ) for
more than m = m(N, d) indices j. Therefore it suffices to show that if y ∈ Φ(ω ∩Qj), then
y ∈ Ψ(ω ∩Q∗j ).

Let x̄ ∈ ω ∩Qj satisfy Φ(x̄) = y. Let B ⊂ Q∗j be the ball centered at x of radius c5JΦ.
We will show that the constants cj can be chosen so as to ensure that y ∈ Ψ(B) ⊂ Ψ(Q∗j ),
which suffices since B ⊂ Q∗j .

Recall that if D ⊂ Rn is a closed ball with boundary ∂D, if F : D → Rn is continuous and
if F |∂D vanishes nowhere, then associated to F is its degree as a mapping from the sphere
∂D to Rn \ {0}; this equals the degree of x 7→ F (x)/|F (x)| as a mapping from ∂D to Sn−1.
The degree is a homotopy invariant. If this degree is nonzero, then 0 ∈ F (D), for otherwise
F |∂D would be homotopic to a constant map via the homotopy ∂D×[0, 1] 3 (x, r) 7→ F (rx).
Any embedding F of ∂D into Rn \ {0} with 0 ∈ F (D) must have degree ±1.

We will show that

(7.6) |Φ(x)−Ψ(x)| < |Φ(x)− y| for all x ∈ ∂B.
Thus Ψ and Φ are homotopic as mappings from ∂B to Rd \ {y}, hence have the same
topological degree. Since Φ|B is a diffeomorphism, and y ∈ Φ(B)\Φ(∂B), Φ : ∂B → Rd\{y}
has topological degree ±1, and therefore Ψ(B) contains y.

It remains only to prove (7.6). By hypothesis,

(7.7) |Φ(x)−Ψ(x)| ≤ c0J 2
Φ.

On the other hand, if Φ̃ denotes the Taylor polynomial of degree one for Φ at x̄ then

|Φ̃(x)− y| = |Φ̃(x)− Φ(x̄)| ≥ cC−d+1|JΦ(x̄)| · |x− x̄| ≥ cC−d+1c1c5J 2
Φ

where c depends only on d. The remainder satisfies

|Φ(x)− Φ̃(x)| ≤ cC|x− x̄|2 ≤ cCc25J 2
Φ
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for another constant c which depends only on d. Thus

|Φ(x)− y| = |Φ(x)− Φ(x̄)| ≥ cC−d+1c1c5J 2
Φ − cCc25J 2

Φ.

Comparing this to (7.7), we see that (7.6) follows if (cC−d+1c1c5 − cCc25)J 2
Φ ≥ c0J 2

Φ. This
can be achieved by choosing first c5, then c0 to be sufficiently small. �

7.3. Measures of images of towers. Collections of mappings satisfying the hypotheses
of Lemma 7.1 arise quite naturally in our context. Consider a single C∞ mapping φ from
any open subset U0 ⊂ Rd to Rd. Suppose that its Jacobian determinant Jφ = det(Dφ) does
not vanish to infinite order at any point of U0, that is, there exists k such that for each
z ∈ U0, ∂αJφ/∂xα(z) 6= 0 for some multi-index satisfying 0 ≤ |α| ≤ k.

Fix a compact subset U ⊂ U0. Fix a small constant ρ0 > 0. To each z ∈ U and each
r = (r1, · · · , rd) with all rj ∈ (0, ρ0) associate the mapping Φx,r : Q → Rd defined by
Φx,r(τ) = φ

(
x + (r1τ1, · · · , rdτd)

)
. These mappings are C∞ uniformly in x, r, since all rj

are bounded above. Define JΦ(x,r) = maxτ∈Q | det(DΦx,r)|. If all rj are mutually weakly
comparable then the nondegeneracy condition ∂αJφ/∂x

α 6= 0 implies a lower bound

(7.8) JΦx,r &
∏
j

rCj

for some finite exponent C. This follows from Taylor expansion about x = 0, using the
condition that some partial derivative ∂αJΦ(x,r) is bounded away from zero with α in
a certain finite set, since the weak comparability assumption ensures that a sufficiently
high order remainder is negligible relative to the contribution of any Taylor polynomial of
sufficiently high order.

Let c0 > 0 be given. Let N be a large positive integer, and define Ψx,r to be the Taylor
polynomial of degree N for Φx,r(τ) about τ = 0. If the scaling factors ri are mutually
weakly comparable, if N is chosen to be sufficiently large relative to both k and to the
parameters in the definition of weak comparability, and if ρ0 is chosen to be sufficiently
small, then the lower bound (7.8) ensures that

(7.9) ‖Φx,r −Ψx,r‖C2 ≤ c0J 2
Φx,r

uniformly for all x, r in the regions specified.
By Lemma 6.3, any centered, generically arranged tower Ω satisfies (7.3). Thus we

conclude

Lemma 7.2. Let φ be a smooth mapping from a subset of Rd to Rd, whose Jacobian
determinant J does not vanish to infinite order at any point. Then there exists C < ∞
such that the following inequality holds. Let Ω be any centered, generically arranged tower
of any multisize (α1, α2, · · · , αd) & (· · · , β?, β, β?, β) and any monotonic multilength `. Let
s ∈ Ω1, and (s, s?) ∈ Ω2. Define

Ω† = · · · × [s? − β?, s? + β?]× [s− β, s+ β]× [s? − β?, s? + β?] · · · × [s− β, s+ β]

with d factors in the Cartesian product. Then

|φ(Ωd)| ≥ C−1|Ωd|max
τ∈Ω†

|J(τ)|

provided that β, β? and all αn, `j are weakly comparable to one another and are all suffi-
ciently small.
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Here C does depend on the constants in the definition of weak comparability. The
leftmost factor in the Cartesian product is either [s?−β?, s?+β?] or [s−β, s+β], depending
on the parity of d.

7.4. Provisional conclusion. Thus far we have proved

Proposition 7.3. Suppose that A(p, p?) <∞. Then for any ε > 0 there exists cε > 0 such
that for any Borel sets E,E? satisfying T (E,E?) > 1

2A(p, p?)|E|1/p|E?|1/p?,

(7.10) |E?| ≥ cε(αα?)ελ(c(αα?)εα, c(αα?)εα?).

We emphasize that cε does not depend on the value of A(p, p?). Here, as elsewhere, α, α?

denote the average numbers of incidences per point of E,E?, respectively.
Indeed, we have shown that there exists z ∈ I such that

|E?| ≥ |Φ(Ωd)| ≥ cε(αα?)ε
∫

Ω†(z,c(αα?)εα,c(αα?)εα?)
| det(DΦ)|,

which by definition is the right-hand side of (7.10).

8. Removal of the assumption that A(p, p?) is finite

8.1. A restriction on the exponents p, p?. There is a universal upper bound on 1
p+ 1

p?−1,
depending on the dimension d but otherwise independent of the details of the geometry of
I, beyond which no bound of the desired type can hold.

Lemma 8.1. A necessary condition for the inequality T (E,E?) ≤ C|E|1/p|E?|1/p? is that

(8.1)
1
p

+
1
p?
− 1 ≤ 1

d
min(

1
p
,

1
p?

).

Proof. Consider any point x?0 ∈ X?, define E? to be a Euclidean ball of small radius ε
centered at x?0, and define E = {x : Mx ∩ E? 6= ∅}. Then E contains a cε-neighborhood
of a curve of length ∼ 1, so |E| ∼ εd−1. Moreover if c is chosen to be sufficiently small,
then T (χE?) & ε at each point of this tubular neighborhood. Thus T (E,E?) & εd, while
|E|1/p|E?|1/p? . ε(d−1)/pεd/p

?
. It is therefore necessary that d ≥ d−1

p + d
p? , or equivalently,

1
p+ 1

p?−1 ≤ 1
dp . The roles of E,E? can be interchanged to obtain the other half of (8.1). �

We will later need the analogous fact for the balls B,B?.

Lemma 8.2. Suppose that for each N, c there exists C < ∞ such that for all z ∈ I and
all 0 < r, r? . 1 which are (N, c)–weakly comparable, the ball B = B(z, r, r?) satisfies
|B| ≤ C|π(B)|1/p|π?(B)|1/p?. Then the exponents 1

p ,
1
p? must satisfy (8.1).

Proof of Lemma 8.2. Let η ∈ (0, 1) be small, fix any z0, and for arbitrarily small δ > 0
consider B(z0, δ

η, δ). Let B,B? be the two associated projections. The two radii δ, δη are
weakly comparable so long as η remains fixed. Lemma (9.2) below asserts that for weakly
comparable bi-radii r, r?, |B| ∼ |B|/δη, and |B?| ∼ |B|/δ. Clearly B is contained within a
tubular neighborhood of width Cδ of a smooth curve of length Cδη, so since I is a manifold
of dimension d+ 1, |B| . δd+η . δd. Thus since 1− 1

p + 1
p? < 0,

|B|
|B|1/p|B?|1/p?

& |B|1−1/p−1/p?δ1/p?δCη & δd(1−1/p−1/p?)δ1/p?δCη

for some C ∈ R+ independent of η; this inequality is uniform so long as η remains fixed.
By letting δ → 0, then letting η → 0, we deduce that if the ratio |B|

|B|1/p|B?|1/p? is bounded
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uniformly for all balls B with weakly comparable radii, then one half of (8.1) must hold.
The other half follows by reversing the roles of X,X?. �

8.2. An induction. Let (p, p?) belong to the interior of the region for which Λ <∞. We
now set up an induction on scales, for certain modified inequalities which are trivial at
sufficiently small scales, so that the provisional assumption of the finiteness of A(p, p?) can
be eliminated. A simpler argument is sketched in Remark 8.1 below, but that argument is
unavoidably restricted to pairs (p, p?) in the interior of the set of all admissible exponents,
whereas the induction on scales could be modified to work for endpoint estimates, if other
steps of the argument did.

Fix coordinate systems for X,X?. Define

(8.2) Aε = sup
E,E?
T (E,E?) |E|−1/p|E?|−1/p? ,

where the supremum is taken over all pairs of sets E,E? which are arbitrary disjoint unions
of cubes of sidelengths ε in those fixed coordinate systems. Aε is certainly finite, for all
exponents p, p? ∈ [1,∞], and it suffices to prove that Aε is bounded above by some finite
constant independent of ε whenever there exist q < p, q? < p? such that Λ(q, q?) <∞.

Fix ε. We carry out the algorithm described in §5, with two changes. Firstly, whenever
one of the cubes which E comprises intersects E(n), we include that entire cube in E(n),
and likewise for E?, E?(n). Secondly, at each stage of the construction we consider only
intervals Ix or I?x? of length > ε. Thus when we attempt to apply the pigeonhole principle
at some stage d− n+ 1, there need not exist mn satisfying the analogue of (5.12) with the
additional constraint that 2mn > ε. If such an mn does exist at each stage, then the proof
proceeds just as above.

If no such mn exists at stage n, then we find subsets E[, E?[ of E,E? respectively such
that T (E[, E?[ ) ≥ c(αα?)δ0T (E,E?) such that either E[ is contained in Π−1(J) for some
interval J of length comparable to ε, or E?[ is contained in Π−1

? (J?) for some interval J?

of length comparable to ε. Moreover E[, E?[ are finite unions of cubes of sidelength ε.
It suffices to discuss the case where E?[ is contained in Π−1

? (J?), since the other case is
equivalent to it under interchange of the roles of X,X?.

Choose exponents q < p and q? < p? satisfying min( 1
dq ,

1
dq? ) ≥ 1

q + 1
q? − 1. These exist,

by (8.1), since (p, p?) is not in the interior of the set of all admissible exponents.
We claim that there exists A‡ < ∞ such that T (E[, E?[ ) ≤ A‡|E[|1/q|E?[ |

1/q? . The
constant A‡ depends only on geometric data and on q, q?, not on any assumption about
A(p, p?). E? can be replaced by E?∩Π?−1(J?) for some interval J? of length comparable to
ε. δ0 can be taken arbitrarily small, with q, q? fixed, so the extra factor |E[|

1
q
− 1
p |E?[ |

1
q?
− 1
p?

in this inequality compensates for the factor (αα?)−ε lost through the crude localization
carried out before stage 1. Thus this bound suffices to complete the proof of an a priori
upper bound for Aε(p, p?), independent of ε.

Decompose E?[ = ∪Mi=1Qi where each Qi is a cube of sidelength ∼ ε, and these cubes
have pairwise disjoint interiors. To each Qi associate the tube τi = {γ?(x?, t) : x? ∈ Qi, t ∈
R} = {x : Mx ∩ Qi 6= ∅}. These tubes have bounded overlap; there exists K < ∞ such
that no point of X belongs to more than K tubes τi, uniformly in ε. This holds because
the mapping (x?, t) 7→ γ?(x?, t), restricted to any slice {x? : Π?(x?) = s} for some s ∈ R1,
is a diffeomorphism, uniformly in s. Thus for any x ∈ X, |{t : γ(x, t) ∈ E?[ }| . ε; so
T (χE?

[
) . εχ∪iτi ∼ ε

∑
i χτi . Therefore

T (E[, E
?
[ ) = 〈χE[ , T (χE?

[
)〉 . ε|E[ ∩ ∪iτi|.
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Thus it suffices to show that if E ⊂ ∪iτi then ε|E| . |E|1/q|E?|1/q? ∼ |E|1/qM1/q?εd/q
?
.

This is equivalent to |E|1−1/q . M1/q?ε(d/q?)−1. Since E ⊂ ∪iτi, this is equivalent to
|∪iτi|1−1/q .M1/q?ε(d/q?)−1. Since |∪iτi| .Mεd−1, it suffices to show that (Mεd−1)1−1/q .
M1/q?ε(d/q?)−1. Since 1

q + 1
q? ≥ 1, the power of M on the left does not exceed the power on

the right. Thus it suffices to compare the powers of ε. Since ε . 1, we need (d−1)(1− 1
q ) ≥

d
q? − 1, which is equivalent to 1

dq ≥
1
q + 1

q? − 1, which we chose q, q? to satisfy. �

Remark 8.1. An alternative argument avoids the induction on scales. As is shown in §8.3
below, Proposition 7.3 can be reinterpreted as an a priori estimate of the form A(p, p?) ≤
1
2A(p, p?) + CηA

†(p − η, p? − η) for any η > 0, where the constant A† depends only on
geometric data and the exponents indicated. But because a factor (α]α?] )

C0δ0 is gained in
(5.15), the same reasoning actually gives

(8.3) A(p, p?) ≤ C ′ηA(p+ η′, p? + η′) + CηA
†(p− η, p? − η)

for any η > 0, where η′ > 0 depends on η. Any pair (p, p?) in the interior of the region of
admissible exponents can be treated by finitely many iterated applications of (8.3).

However, we plan to use the induction on scales in future work to treat exponents on the
border of the admissible region, where the alternative argument cannot be applied.

8.3. Conclusion. This completes the proof of a version of Proposition 7.3 without the
hypothesis that A(p, p?) < ∞: For any two sets E,E? which are finite unions of cubes of
any common positive sidelength, for any ε > 0 there exists cε > 0 such that (7.10) holds;
|E?| ≥ cε(αα?)ελ(c(αα?)εα, c(αα?)εα?).

Let a, a? be the exponents associated to (p, p?) as in (2.17). Suppose now that there exist
q < p, q? < p? such that Λ(q, q?) <∞. By Lemma 2.3 applied to (q, q?), there exist η > 0
such that for any (N, c) there exists C <∞ such that whenever β, β? . 1 are (N, c)–weakly
comparable,

(8.4) λ(β, β?) ≥ C−1βa−ηβa?−1−η
? .

Choose ε to be sufficiently small relative to η, and set β = cε(αα?)εα and β? = cε(αα?)εα?.
Then there exist N, c depending on ε but not on α, α? for which β, β? are (N, c)–weakly
comparable. Since ε is small relative to η, we conclude from (7.10) and transitivity that
|E?| ≥ C−1αa(α?)a?−1. By Lemma 2.3, it follows that T (E,E?) is majorized by the desired
quantity |E|1/p|E|1/p? . This a priori inequality for finite unions of cubes completes the proof
of our main upper bound. �

9. Properties of balls in I

It remains to establish Lemmas 2.2 and 2.3, which are essentially geometric, rather
than analytic, results. Our discussion relies heavily on work of Nagel, Stein, and Wainger
[23], who established foundational results concerning two-parameter Carnot-Caratheodory
balls with weakly comparable radii, although they formulated their results only in the
one-parameter case.

9.1. Doubling estimates. We assume throughout the discussion that the vector fields
V, V ? on the incidence manifold I satisfy the bracket condition.

Lemma 9.1. For any N <∞ there exists C <∞ such that for all z = (x, x?) ∈ I and all
sufficiently small positive r, r? which are weakly comparable with exponent N ,

(9.1) |B(z, 2r, 2r?)| ≤ C|B(z, r, r?)|.
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This lemma is essentially contained in the theory of Nagel, Stein, and Wainger [23]
concerning balls and metrics associated to vector fields. Given a finite collection of vector
fields {Vj}, those authors discuss certain properties of balls with arbitrary centers x in
some open set and arbitrary radii 0 < r ≤ r0. This theory can be reformulated in terms
of families of finite collections of vector fields {rVj,x} depending on parameters (r, x); here
Vj,x is defined in terms of Vj by an appropriate change of coordinates mapping x to 0.
One then considers only the ball of radius 1 centered at 0, for each parameter (r, x). The
analysis of [23] establishes a doubling inequality for volumes of balls with a uniform doubling
constant C, for families of vector fields satisfying appropriate uniformity hypotheses, which
are however not explicitly formulated since [23] is concerned explicitly only with a special
case.

Properties of balls with two independent radii, associated to {rV, r?V ?}, can be refor-
mulated in this same way in terms of families of balls of radius 1 centered at 0. It can
be verified by inspection that the proofs in [23] apply in this situation, under the crucial
hypothesis that r, r? remain weakly comparable. Among the key points which must be
verified, and whose analogues do hold in the weakly comparable two-parameter setting un-
der the bracket hypothesis, are the two inequalities (17) and (26) of [23] related to Taylor
expansions. We will not give any further proof of Lemma 9.1 here, but refer the reader to
[23] for details. Alternatively, Lemma 9.1 is proved by Tao and Wright [37].

Lemma 9.2. Let N, c <∞ be arbitrary. Then for all (x, x?) ∈ I and all sufficiently small
r, r? which are (N, c)-weakly comparable,

r?|B?(x, x?, r, r?)| ∼ |B(x, x?, r, r?)|(9.2)

r|B(x, x?, r, r?)| ∼ |B(x, x?, r, r?)|(9.3)

|B(x, x?, 2r, 2r?)| ∼ |B(x, x?, r, r?)|(9.4)

|B?(x, x?, 2r, 2r?)| ∼ |B?(x, x?, r, r?)|,(9.5)

with uniform upper and lower bounds so long as N, c remain fixed.

Proof. The last two conclusions follow from the first two via (9.1). The second conclusion is
the same as the first with the roles of X,X? interchanged. To prove the first, note that the
intersection of B(x, x?, Cr, Cr?) with the preimage under π? of any point of B?(x, x?, r, r?)
contains an interval of length r?. Thus r?|B?(x, x?, r, r?)| . |B(x, x?, Cr, Cr?)| ∼ |B(x, x?, r, r?)|.
To prove the converse inequality fix a smooth function h : I → R such that V (h) ≡ 0 but
V ?(h) vanishes nowhere. Any linear combination W of rV, r?V ? and their iterated Lie
brackets satisfies W (h) = O(r?), since V (h) ≡ 0, the coefficients of W are O(r?) whenever
W involves r?V ?, and r, r? . 1. Therefore for any z1, z2 ∈ B(x, x?, r, r?), |h(z1)− h(z2)| =
O(r?). In particular, in the intersection of any fiber of π? with B(x, x?, r, r?), h varies by
at most O(r?). Since V ?(h) never vanishes, this implies that any fiber has one-dimensional
measure O(r?), and hence |B(x, x?, r, r?)| . r?|B?(x, x?, r, r?)|. �

9.2. Balls versus images. Let

(9.6) Qr,r? = · · · × [−r?, r?]× [−r, r]× [−r?, r?]× [−r, r] ⊂ Rd+1

with d+ 1 factors in the Cartesian product. Let z ∈ I. For all sufficiently small τ ∈ Rd+1

define

(9.7) Φ\(τ) = etd+1V etdV
?
etd−1V etd−2V

? · · · et1Ṽ (z),

where Ṽ = V if d is even, and Ṽ = V ? if d is odd.
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Lemma 9.3. Suppose that r, r? are weakly comparable with respect to some finite exponent
N . Then

(9.8) |Φ\(Qr,r?)| ∼ |B(z, r, r?)|,
uniformly in z, r, r?.

Proof. Consider the vector fields V1 = rV , V2 = r?V ?. Define finite collections of vector
fields gk by induction on k, by setting g1 = {V1, V2}, and for each k > 1, defining gk to be
the set of all commutators [W,W ′] such that there exist m,n satisfying m + n = k with
W ∈ gm and W ′ ∈ gn. The gk are finite sets, whose cardinalities are bounded above by
quantities independent of r, r?.

Let K be sufficiently large, and choose vector fields W1, · · · ,Wd+1 ∈ ∪Kk=1gk such that
|det(W1, · · · ,Wd+1)(z)| is maximal among all possible choices of W1, · · · ,Wd+1. These
depend on r, r?, and while this maximal determinant is nonzero for any nonzero r, r? by
the bracket hypothesis, it satisfies no uniform lower bound.

Nonetheless there exists a neighborhood U0 ⊂ Rd+1 of the origin, independent of r, r?,
such that the mapping Ψ(s) = exp(

∑d+1
j=1 sjWj)(z) is a diffeomorphism of U0 with an open

subset of I. Ψ(U0) depends strongly on r, r?, of course. This is proved in [23] in the
one-parameter setting r = r?; the same analysis applies provided that r, r? remain weakly
comparable with arbitrary but fixed parameters N, c. It is likewise shown in [23] that

(9.9) |B(z, r, r?)| ∼ |Qr,r? |max
s∈U0

|∂Ψ/∂s|,

for weakly comparable r, r?.
Denote by Y1, Y2 the pullbacks of V1 = rV , V2 = r?V ? under Ψ. Then as shown in [23], if

U0 is chosen to be sufficiently small then Y1, Y2 are C∞ in U0, with upper bounds uniform
in r, r?, z. Moreover, Y1, Y2 satisfy the bracket condition with uniform lower bounds; indeed
the pullbacks of W1, · · · ,Wd+1 are iterated Lie brackets of Y1, Y2 of uniformly bounded
degrees, and these are the coordinate vector fields at the origin in the s coordinate system.
Since they are uniformly C∞, they also span the tangent space at every point of a uniform
neighborhood U0.

Consider now the mapping

φ(τ) = etd+1Y2etdY1etd−1Y2 · · · (0),

for τ = (t1, · · · , td+1) ∈ U0; Φ\ = Ψ ◦ φ. φ is C∞, with upper bounds uniform in z, r, r?.
For any particular z, r, r?, its Jacobian determinant does not vanish identically in any
neighborhood of τ = 0, by Lemma 9.6 below. We claim a uniform lower bound: For any
c0 > 0 there exists c1 > 0 independent of z, r, r? such that

(9.10) max
|τ |≤c0

| det(Dφ)(τ)| ≥ c1.

Since det(DΦ\) = det(DΨ) ·det(Dφ), (9.10) and (9.9) together yield the desired conclusion
(9.8).

(9.10) is proved by contradiction. If it were false, then there would be a sequence of such
structures, determined by a sequence of values of r, r? tending to zero, for which the asso-
ciated Jacobian determinants tended uniformly to zero. By the Arzela-Ascoli theorem and
the uniform upper bounds on all CM norms of the coefficients of Y1, Y2 in the s coordinate
system, there would exist a subsequence Y (ν)

1 , Y
(ν)

2 converging in the C∞ topology to some
limiting vector fields Y 1, Y 2. Because Y (ν)

1 , Y
(ν)

2 satisfy the bracket hypothesis uniformly
in ν, Y 1, Y 2 would still satisfy the bracket hypothesis, and the associated mapping φ would
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have identically vanishing Jacobian determinant, in some neighborhood of the origin. This
is a contradiction, so the claim is proved. �

Lemma 9.4. Let (x, x?) ∈ I. For any N, c there exists C < ∞ such that for all (N, c)–
weakly comparable pairs r, r?,

(9.11) C−1|B?(x, x?, r, r?)| ≤ |Φ(Ω†(x, x?, r, r?)| ≤ C|B?(x, x?, r, r?)|.

Proof. Consider the mapping from Ω†(x, x?, r, r?)×[−r?, r?] to I defined for τ = (t1, · · · , td, td+1)
by Φ\(τ) = etd+1V

?
etdV etd−1V

? · · · et1Ṽ (x, x?) where Ṽ is either V or V ?, as dictated by par-
ity, and eW (·) denotes the exponential mapping associated to a vector field W . This is a
lift of the mapping Φ̃(τ) = γ?(Φ(t1, · · · , td), td+1) in the sense that π ◦ Φ\ ≡ Φ̃.

By definition of V ?, there is the additional relation π?(Φ\(τ)) ≡ Φ(t1, · · · , td), since
V ? is tangent to the fibers of π?. The range of Φ\ is contained in B(x, x?, Cr, Cr?), so
Φ(Ω†(x, x?, r, r?)) ⊂ B?(x, x?, Cr, Cr?), and hence |Φ(Ω†(x, x?, r, r?))| . |B?(x, x?, r, r?)|.

To prove the converse inequality, observe that for any set F ⊂ B(x, x?, Cr, Cr?), |π?(F )| &
|F |/r?. This holds because the fibers of π?, intersected with B(x, x?, Cr, Cr?), are contained
in intervals of diameter Cr?.

Now Φ(Ω†(x, x?, r, r?)) ⊂ π?(F ) where

F = Φ\(Ω†(x, x?, r, r?)× [−r?, r?]) ⊂ B(x, x?, Cr, Cr?).

Therefore
|Φ(Ω†(x, x?, r, r?))| & (r?)−1|Φ\(Ω†(x, x?, r, r?)× [−r?, r?])|.

By the preceding lemma, this is & |B(x, x?, r, r?)|/r?, which in turn is comparable to
|B?(x, x?, r, r?)| by Lemma 9.2. �

The arguments in §7 establish

Lemma 9.5. For any (N, c) there exists C <∞ such that for all (N, c)–weakly comparable
parameters 0 < r, r? � 1 and all z = (x, x?) ∈ I,

(9.12) C−1λ(z, r, r?) ≤ |Φ(Ω†(z, r, r?)| ≤ Cλ(z, r, r?).

This and Lemma 9.4 together imply the equivalence of the second condition of Lemma 2.3
with the third.

The next result was used in the proof of Lemma 9.3.

Lemma 9.6. Let {Yα : α ∈ A} be a finite collection of C∞ vector fields, satisfying the
bracket condition at a point z0 ∈ Rn. For each β = (β1, · · · , βn) ∈ An define Φβ(t1, · · · , tn) =
etnYβnetn−1Yβn−1 · · · et1Yβ1 (z0). Then for any δ > 0 there exist β ∈ An and τ = (t1, · · · , tn)
satisfying |τ | < δ such that det(∂Φβ/∂τ)(τ) 6= 0. Moreover, for any α0 ∈ A such that
Yα0(z0) 6= 0, there exists such a multi-index β satisfying β1 = α0.

In the case of two vector fields Y1, Y2, the only possible ordered n-tuples β are (1, 2, 1, 2, · · · )
and (2, 1, 2, 1, · · · ); DΦβ cannot have full rank if two successive indices βj , βj+1 are equal.
Since it is assumed in Lemma 9.3 that neither vector field vanishes anywhere, Lemma 9.6
implies the claim made in the proof of the former lemma.

Proof. Consider any α0 ∈ A for which Yα0(z0) 6= 0, and set β1 = α0. There must exist β2

such that the derivative with respect to (t1, t2) of the mapping Ψ2(t1, t2) = et2Yβ2et1Yβ1 (z0)
has rank 2 at a sequence of points tending to (0, 0). For if not, then for sufficiently small
δ > 0, each vector field Yα is tangent to the curve M1 = {et1Yβ1 (z0) : |t| < δ} in a relatively
open subset of M1 containing z0. Therefore any iterated Lie bracket of the vector fields
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Yα is likewise tangent to M1 in that same relatively open subset, contradicting the bracket
hypothesis.

Fix such a β2, and for any β3 ∈ A consider the mapping Ψ3(t1, t2, t3) = et3Yβ3et2Yβ2et1Yβ1 (z0).
There must exist β3 such that DΨ3 has rank 3 at a sequence of points (t1, t2, t3) tending
to 0 ∈ R3. For if not, then in any neighborhood of z0 there would exist a small open two-
dimensional manifold M2, parametrized by Φ2 restricted to a certain open subset U ⊂ R2,
such that DΨ2 has full rank at each point (t1, t2) ∈ U , and sucb that each vector field Yα
is tangent to M2 at each point of M2. Therefore the bracket hypothesis cannot hold at any
point of M2. Since the bracket hypothesis is satisfied at z0, it must be satisfied at every
point of some neighborhood of z0, so again we have reached a contradiction.

Iterating this procedure up through dimension n yields the conclusion of the lemma. �

9.3. The converse inequality in Theorem 2.4. It remains to be shown that for any
N, c, whenever r, r? are (N, c)–weakly comparable, any ball B = B(z, r, r?) satisfies

(9.13)
|B|

|π(B)|1/p|π?(B)|1/p?
. sup

E,E?

T (E,E?)
|E|1/p|E?|1/p?

,

where the supremum is taken over arbitrary Borel sets having strictly positive measures.
To prove this set E = B?(z, 1

2r,
1
2r
?) and E? = B(z, r, r?). Then T (χE?) ≥ cr at every point

of E. By Lemma 9.2 and the weak comparability assumption, |B| ∼ r|E| and |π(B)| ∼ |E|,
while E? is defined to be π?(B). Consequently

|B|
|π(B)|1/p|π?(B)|1/p?

∼ r|E|
|E|1/p|E?|1/p?

.
T (E,E?)
|E|1/p|E?|1/p?

.

10. Superdoubling

The volume doubling property which is a pillar of the theory of one-parameter balls [23]
does not hold, in general, for two-parameter balls in the presence of rotational curvature.

Proposition 10.1. There exists a C∞ incidence manifold I ⊂ R2×R2 possessing rotational
curvature with a point z0 ∈ I such that

(10.1) lim sup
max(r,r?)→0

|B(z0, 2r, 2r?)|
|B(z0, r, r?)|

=∞.

Proof. Let I be a small neighborhood of z0 = 0 ∈ R3 equipped with coordinates (x, y, t).
Let a ∈ C∞(R) be an odd function which vanishes to infinite order at the origin, and
is positive and strictly increasing on R+. On I define two vector fields V = ∂x and
V ? = ∂y+xy∂t+a(x)∂t. There exist C∞ submersions π, π? from I to open sets X,X? ⊂ R2

such that the integral curves of V, V ? are the sets π−1(x) and (π?)−1(x?) for x ∈ X, x? ∈ X?.
Then [V, V ?] = (y+a′(x))∂t, so [V ?, [V, V ?]] = ∂t. Thus the bracket condition, equivalent

to rotational curvature, is satisfied. Moreover [V, [V, V ?]] = a′′(x)∂t.
B(z0, r, r?) is by definition the set of all points which can be reached by flowing from z0

for time ≤ 1 along any real vector field c(x, y, t)rV + c?(x, y, t)r?V ? whose coefficients c, c?
are Lipschitz continuous and satisfy c2 + c2

? ≤ 1 at every point (x, y, t). In particular, the
coordinates of any point z = (x, y, t) ∈ B(0, r, r?) satisfy |x| . r and |y| . r?. It follows
from the explicit form of V, V ? that

|t| ≤ rr2
? + r? max

|x|≤r
|a(x)| = rr2

? + r? max
|x|≤r

|a(x)| ∼ rr2
? + r?a(r).
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In particular, if rr? ≤ a(r) then every point (x, y, t) ∈ B(z0, r, r?) satisfies |t| ≤ 2r?a(r), so

(10.2)
∣∣B(z0, r, r?)

∣∣ ≤ 2rr2
?a(r).

We claim that

(10.3)
∣∣B(z0, 5r, 5r?)

∣∣ ≥ rr2
?a(r).

If a is constructed to satisfy lim supx→0+ a(2x)/a(x) =∞ then the conclusion (10.1) follows
from from (10.2) and (10.3) together.

We show first that B(0, 4r, 4r?) contains each point (0, 0, t) with |t| ≤ r?a(r). It suffices
to prove this for t > 0, since a is odd. To reach any such point from z0 = 0 by flowing
along V, V ?, first flow along rV for time 1 to (r, 0, 0), then flow along r?V ?. If this second
flow is parametrized by s then one moves through points (r, r?s, τ(s)) where dτ/ds =
r? · (rs + a(r)) ≥ r?a(r). Therefore by flowing for some length of time ≤ 1 one reaches
(r, y, t) for some y ∈ [0, r?]. Flowing along rV in reverse for time 1 brings us to (0, y, t), and
then flowing along r?V ? in reverse for time y brings us to (0, 0, t). The total time elapsed
is ≤ 4.

The x coordinate remains constant along this motion, while the t coordinate varies at a
rate Ar?(a(cAr) + cAry), which is essentially Ar?a(cAr). Thus we arrive at (cAr, y, t) with
the desired value of t and some value of y. Then follow ArV in reverse to get to (0, y, t),
and then clearly following Ar?V ? in reverse gets us back to (0, 0, t) with the same value of
t.

For any x, y satisfying (x/r)2 + (y/r?)2 < 1, there exists s(x, y) such that (x, y, s(x, y)) ∈
B(0, r, r?). Since the coefficients of V, V ? are independent of the third coordinate, it follows
that (x, y, t + s(x, y)) ∈ B((0, 0, t), r, r?). If |t| < r?a(r) then (0, 0, t) ∈ B(0, 4r, 4r?), so
(x, y, t+ s(x, y)) ∈ B(0, 5r, 5r?). Thus |B(0, 5r, 5r?)| ≥ 2π rr2

?a(r). �

11. Remarks

Remark 11.1. There are three points in this argument at which an arbitrarily small
positive power of αα? is lost: (i) in the crude localization which replaces E,E? by E], E?] ;
(ii) in the application (5.12) of the pigeonhole principle, and (iii) in the replacement of
F̃d(x) by a generic subset Fd(x) (see (5.11)) whose measure need not quite be comparable
to the measure of F̃d(x). We believe that we can show that the powers of αα? lost in points
(ii) and (iii) are more than adequately compensated for by a gain originating in the first
inequality in (6.2) together with (11.1), below. We have not carried this out here, since we
know of no way to avoid the loss (i) for general C∞ incidence relations. In the real analytic
case, though, the reduction to weakly comparable parameters should be unnecessary, and
only the purportedly less serious losses (ii), (iii) should remain.

Remark 11.2. The assumption that the manifoldsMx,M?
x? are one-dimensional is used

in three distinct ways in the analysis. (i) It enters in the definition and use of genericity. It
should be useful to extend this theory to higher dimensions, replacing intervals by subalge-
braic sets of bounded, but arbitrarily large, degree and complexity. See Remark 11.6 below.
(ii) It is essential in the main spatial localization which resulted in the orthogonality relation
(4.5). Matters appear to be significantly more complicated in higher dimensions. (iii) When
Φ : ω → Rd and ω has dimension d, under favorable circumstances |Φ(ω)| &

∫
ω |detDΦ|,

but when ω has higher dimension than d, estimating the measure of Φ(ω) with reasonable
efficiency seems to be more difficult. The assumption that the submanifolds M,M? are
one-dimensional was essential in allowing us to restrict discussion to the situation when the
domain and range of Φ have equal dimensions.
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One can attempt to circumvent this difficulty by majorizing the measure of a union of
images of d-dimensional slices by the average of their measures. In general this is devastat-
ingly inefficient, but it nonetheless was used to obtain sharp estimates in [6], and again in
[8], after appropriate preparations.

Remark 11.3. In this one-dimensional case, to every triple (z, α, α?) ∈ I × R+ × R+ is
associated an essentially unique canonical pair of sets, π(B(z, α, α?)) and π?(B(z, α, α?)).
This uniqueness fails dramatically [8] for convolution with surface measure on a paraboloid
in Rd, for d > 2.

Conjecture 11.4. Let X,X? be real analytic manifolds. If I is a real analytic submaniold
of X ×X? then we conjecture that endpoint strong type inequalities are valid. That is, if
the ratios |B| · |π(B)|−1/p|π?(B)|−1/p? are uniformly bounded, then for all functions f, f?,
〈f, T (f?)〉 ≤ C|E|1/p|E?|1/p? , for the same exponents p, p?.

[8] shows how to pass from restricted weak type bounds to strong type Lp 7→ Lq bounds,
even for endpoint exponents, for a related operator. Betsy Stovall [35] has extended this
argument to the operators defined by convolution with arc length measure on finite portions
of the curves (t, t2, t3, · · · , td) in Rd using the method of [6]. This paper is one step towards
a proof of this conjecture, eliminating some but not all losses of |E|ε|E?|ε from the analysis.

One remaining source of such a loss is the notion of a generic subset of an interval used
here. An alternative notion introduced in [9] is also defective, though in a different way. We
have found yet another alternative notion of genericity which avoids this loss. But other
independent improvements are needed to complete the proof of the restricted weak type
inequality, and not all details have yet been verified.

Question 11.5. Do there exist C∞ incidence manifolds with rotational curvature, for
which the ratios |B((x, x?), r, r?)|/|B(x, r, r?)|1/p|B?(x?, r, r?)|1/p? are uniformly bounded,
yet the corresponding the restricted weak type inequality T (E,E?) ≤ C|E|1/p|E?|1/p? fails?

The counterexample of Proposition 10.1, concerning the volume doubling property, does
not seem to lead directly to a counterexample to endpoint Lp → Lq inequalities.

Remark 11.6. There is a natural analogous notion of genericity for subsets of higher-
dimensional Euclidean spaces. Let A be a subalgebraic3 set of Rk of bounded degree and
complexity, having positive Lebesgue measure. A subset E ⊂ A is said to be (ε, δ)–generic
if |E ∩A?| ≤ ε|E| for every subalgebraic subset A? ⊂ A of bounded degree and complexity
satisfying |A?| ≤ δ|A|.

Here “bounded degree” means that the inequalities used to define A involve only poly-
nomials of degrees not exceeding a specified constant, and likewise “bounded complexity”
means that at most a specified number of unions, complementations, and intersections are
allowed in defining A from such inequalities. There is some latitude for discretion here; one
might require the same maximal degree and complexity for A?, or one might allow specified
higher degree and complexity. One might work with sets parametrized by diffeomorphisms
with rectangles, satisfying certain natural derivative bounds, rather than directly with sets
defined by inequalities.

These notions underlie the analysis of a basic example in [8], for which general subal-
gebraic sets can be replaced by convex sets. A helpful property of convex sets is that in

3The theory ought to be C∞ diffeomorphism invariant. But just as was done in §4.1, by sacrificing
endpoints we can localize matters to a Euclidean ball of radius min(α, α?)ε. By Taylor approximation,
everything can then be reduced to polynomials of bounded degree.
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Euclidean space of any fixed dimension, any such set has a subset with uniformly compa-
rable volume and uniformly bounded complexity.

Remark 11.7. The Jacobian determinant J(τ) = det ∂Γd(x, τ)/∂τ (or J?(τ), depending
on the parity of d) satisfies

(11.1) P (t) = 0 whenever there exists an index n ∈ {3, 4, · · · , d} such that tn = tn−2 .

Indeed if d is even then

Γ′n(y, t1, · · · , tn−2, tn−1, tn−2) = Γ′n−2(y, t1, · · · , tn−2) for all tn−1.

Therefore

Φd(t1, · · · , tn−2, tn−1, tn−2, tn+1, · · · , td) = Γ′(y, t1, · · · , tn−2, tn−1, tn−2, tn+1, · · · , td)

is likewise independent of tn−1. Thus the Jacobian matrix cannot have full rank when
tn−2 = tn.
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