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Cauchy problem for 1D periodic cubic NLS: iut + uxx + ω|u|2u = 0

u(0, x) = f(x)

where x ∈ T = R/2πZ,
t ∈ R,
ω = ±1.
(Distinction between focusing and defocusing
cases plays no role in this talk.)

• Bourgain [1993]: wellposed in Sobolev space
Hs ∀ s ≥ 0, with uniformly continuous depen-
dence on the initial datum.
• Tsutsumi earlier showed wellposedness in L2(R).
• Burq-Gérard-Tzvetkov: Illposed, in sense that
uniformly continuous dependence breaks down,
∀ s < 0.
• Colliander-Tao-C: Unstable in a stronger sense
for s < 0.

This lecture: Existence of solutions for wider
classes of initial data. (Vargas-Vega have achieved
one such extension.)
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Function spaces: F`p(T) for p ∈ [1,∞]:

‖f‖F`p = ‖f̂‖`p(Z) =
( ∑

n∈Z
|f̂(n)|p

)1/p
.

For p > 2 this is a space of distributions, larger

than borderline Sobolev space H0.

I maintain that these function spaces are rather

natural in the context of NLS from the view-

point of inverse scattering theory (more on this

later).
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Basic property: conservation law∫
T
|u(t, x)|2 dx =

∫
T
|f(x)|2 dx ∀ t > 0.

In order for the Cauchy problem to make any

sense in F`p for p > 2 it is essential to modify

NLS. Write

µ(g) = (2π)−1
∫
T

g(x) dx = mean value of g.

Consider modified NLS iut + uxx + ω
(
|u|2 − 2µ(|u|2)

)
u = 0

u(0, x) = f(x)
(NLS∗)

In (NLS∗), µ(|u|2) is shorthand for µ(|u(t, ·)|2) =

(2π)−1‖u(t, ·)‖2
L2, which is independent of t for

all sufficiently smooth solutions. We’ve merely

introduced a trivial unimodular scalar factor

e2iµt, where µ = µ(|f |2).
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Theorem. (Existence and continuity) For any

p ∈ [1,∞) and any R < ∞, there exists τ > 0

for which the solution mapping f 7→ u(t, x), de-

fined initially for f ∈ C∞(T), extends to a uni-

formly continuous mapping from F`p to C0(F`p).

More precisely: From any bounded set in F`p(T)

to C0([0, τ ],F`p(T)), where τ > 0 depends on

the bounded set.

For the unmodified equation this has an obvi-

ous consequence in terms of continuous depen-

dence for initial data with identical L2 norms

which are close in F`p. . .
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The following result quantifies the relation be-

tween the nonlinear evolution (NLS∗) and the

corresponding linear Cauchy problem{
ivt + vxx = 0

v(0, x) = f(x).
(LS)

Proposition. Let R < ∞ and p ∈ [1,∞). Let

q > p/3 also satisfy q ≥ 1. Then there exist

τ, ε > 0 and C < ∞ such that for any initial

datum f satisfying ‖f‖F`p ≤ R, the solutions u

of (NLS*) and v of (LS) satisfy

‖u(t, ·)− v(t, ·)‖F`q ≤ Ctε for all t ∈ [0, τ ].

u denotes solution defined by approximating

f by smooth functions, solving equation, and

passing to limit. Thus for p > 1, the difference

between (NLS*) and (LS) is smoother, in F`q

scale, than the linear evolution (LS).
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The “solution” defined by approximating initial

datum by smooth data and passing to limit is

a solution in a more natural sense.

Definition. A sequence of Fourier truncation

operators Tν is any sequence

T̂νf(n) = mν(n)f̂(n)

such that

(i) mν is finitely supported ∀ ν

(ii) supν,n |mν(n)| < ∞,

(iii) ∀n ∈ Z, mν(n) → 1 as ν →∞.

(Tν acts also on functions v(t, x) in the obvious

way.)
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A more fundamental question than whether

some function u(t, x) is a solution of our partial

differential equation is whether the nonlinear

term N (u) = (|u|2− 2µ(|u|2))u has an intrinsic

meaning.

Definition. N (u) exists in the limiting Fourier

cutoff sense if for any sequence of Fourier trun-

cation operators, limν→∞N (Tνu) exists in the

sense of distributions.

(This limit is then necessarily independent of

the sequence mν.)

Definition. u ∈ C0([0, τ ],F`p(T)) is said to be

a weak solution of (NLS*) if N (u) exists in the

above sense, and if the differential equation

then holds.

8



Proposition. Let p ∈ [1,∞), s ≥ 0, and f ∈
F`p. Define u(t, x) by approximating f by smooth

functions, solving (NLS*), and passing to the

limit. Then for any R < ∞ there exists τ > 0

such that whenever ‖f‖F`p ≤ R, u is a weak

solution of (NLS*) in the sense defined above.

Making sense of the nonlinearity via this lim-

iting procedure bears some superficial resem-

blance to general theories of multiplication of

distributions, but the existence here of a limit

that is independent of the sequence (mν) gives

u a much stronger claim to the title of solution.
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Kappeler and Topalov have used inverse scat-

tering theory to solve the KdV equation for

singular initial data, in the sense that the so-

lution map defined for smooth initial data ex-

tends continuously.

Their work seems to leave open the question

of whether their solution satisfies the equation

in any stronger sense.

Takaoka and Tsutsumi have shown that this

is true for a partial range of the Sobolev expo-

nents in the Kappeler-Topalov theorem, but I

don’t know the precise status of this question.
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Naturality of the spaces F`p

In work not yet written up for dissemination, I

believe that Burak Erdogan and I have shown

that for initial data with small F`p norms, the

problem is wellposed globally in time in the

defocusing case.

This is (to be) proved by combining the local-

in-time wellposedness with the conserved quan-

tities furnished by inverse scattering theory.

Our calculations show that (assuming small

norms) the `p norm of f̂ is equivalent to the `p

norm of the sequence of spectral gap lengths

for an associated Dirac operator with “poten-

tial” f . These Dirac gap lengths are invariant

under the (NLS) flow.
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I’ll reformulate NLS as an (infinite) coupled

system of ODEs for Fourier coefficients

f̂(n) = (2π)−1
∫
T

f(x)e−inx dx n ∈ Z.

û(t, n) = (2π)−1
∫
T

u(t, x)e−inx dx.

In terms of un(t) = û(t, n), (NLS*) is

i
dun(t)

dt
− n2un

= −ω
∗∑

j−k+l=n

ujūkul + ω|un|2un

where
∑∗ indicates that the sum is over all

terms with j, l 6= k, n.

Existence theorem and nonuniqueness are proved

by working with this system.
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The difference between (NLS) and (NLS*) is

precisely a multiple of (
∑

j |uj|2)un on the right-

hand side.

Since L2 norm is conserved, if initial datum has

infinite L2 norm then this term is an infinite

constant times un.
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Nonuniqueness

From the MSRI announcement of this work-

shop: “If the interaction is strong enough then

it may create new waves.”

Theorem. For any p > 2 there exists a nonzero

“solution” u of (NLS*) in C0([0,1],F`p) satis-

fying u(0, x) ≡ 0. The same holds in C0([0,1], Hs)

for all s < 0.

I don’t know about p ≤ 2, or s ≥ 0. Uniqueness was
established by Bourgain, in the class C0(H0) ∩ L4

x,t.

For the 2D incompressible periodic Euler equation, Schef-

fer (2nd proof by Shnirelman) has proved: There exists

a nonzero solution in the class L2
x,t that is ≡ 0 for t ≤ 0

(and t ≥ 1). My construction does not seem to give

that, but it does give nonuniqueness of generalized so-

lutions for the 2D incompressible periodic Navier-Stokes

equation in C0(Hs) for all s < 0.
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For Navier-Stokes there are examples of nonunique-

ness due to Ladyzhenskaya, but they are on

bounded time-dependent domains which reduce

to a single point at t = 0 and either involve

nonstandard boundary conditions, or give so-

lutions with infinite L2
x,t norm.
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Here u is a solution in 3 senses:

• Consider inhomogeneous (NLS*) iut + uxx + ω
(
|u|2 − 2µ(|u|2))u = F

u(0, x) ≡ 0

Then u = limν→∞ uν where uν is a solution of

inhomogeneous (NLS*) with driving force Fν

where

uν → u in C0(F`p)

e−it∆Fν → 0 in C−1(F`∞).

• u is a weak solution of (NLS*), in the limiting

Fourier cutoff sense.

• Each Fourier coefficient û(t, n) is a C∞ func-

tion of t. The infinite series in the ODE for

the n-th Fourier coefficient of N (u) involves

only finitely many nonzero terms for each n,

and each ODE holds in the ordinary sense.
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Nonuniqueness is based on an infinite cascade

of energy from higher to lower Fourier modes.

(Shnirelman’s construction for the Euler equa-

tion shares this feature.)

High modes can interact with one another to

drive low modes through the terms ujūkul in

the equation for dun/dt, where j − k + l = n.

These modes in turn can be driven by still

(much) higher modes, and so on.

I see no reason to think that the details of the

(very simple) construction have been optimally

arranged.
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For 1D periodic NLS with nonlinearity u2 or ū2,

Kenig-Ponce-Vega have established wellposed-

ness in Hs for a range of s extending below

0, with existence and uniqueness in a smaller

space than C0(Hs).

Our construction applies here also and gives

nonuniqueness in C0(Hs). (No modification of

the PDE is needed in this case.)
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Essence of the nonuniqueness construction is
an approximation result for smooth solutions
of the inhomogeneous problem.
Proposition. Let p > 2 and ω 6= 0. Let u ∈
C∞([0,1] × T). Suppose that for all n, û(t, n)
vanishes to infinite order as t → 0+.
For any ε > 0 and N < ∞ there exist v, F ∈
C∞([0,1] × T), each of whose Fourier coeffi-
cients vanishes to infinite order as t → 0+,
such that v satisfies inhomogeneous (NLS*)
with driving force F , and

‖v − u‖C0([0,1],F`p) ≤ ε

‖e−it∆F‖C−1([0,1],F`∞) ≤ ε.

(v̂ − û)(t, n) ≡ F̂ (t, n) ≡ 0 ∀ |n| < N.

The same holds with F`p replaced by Hs for
any s < 0.
A simple limiting argument using this result
produces nonunique solutions and shows that
they are solutions in the various senses I dis-
cussed earlier.
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The procedure is roughly this:

Regard u as being an exact solution of inho-

mogeneous (NLS*) with driving force G.

Set v = u+h and choose h to have small norm

and to produce an offsetting driving force −G.

That is,

N (h) = −G + other terms.

If u satisfies inhomogeneous (NLS*) with driv-

ing force G, then v = u + h satisfies inhomo-

geneous (NLS*) with driving force[
G+N (h)

]
+

[
N (u+h)−N (u)−N (h)

]
+

[
iht+hxx

]
.
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N (h) will inevitably include many “other terms”

that we don’t want, and cross terms from N (u+

h)−N (u)−N (h) also occur, driving unwanted

Fourier modes.

Key. It’s easy to arrange that all unwanted

Fourier modes are arbitrarily high frequency

modes.

If for instance

h(t, x) = A(t)eiax + B(t)eibx

then (for ω = 1)

N (h) = A2B̄ei(2a−b)x + B2Āei(2b−a)x

+ |A|2Aeiax + |B|2Beibx.

Given n, we can choose a, b arbitrarily large so

that 2a − b = n, and 2b − a is arbitrarily large

(b ≈ 2a).
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I turn now to the existence proof.

The plan is to show that the mapping

[initial datum u(0) 7→ solution u(t)]

is analytic by expanding it in power series, cal-

culating the resulting series explicitly, and prov-

ing absolute convergence. This actually works.

The terms in the power series are now multi-

linear operators of all degrees, mapping

F`p ⊗F`p ⊗F`p ⊗ · · · → F`q,

rather than numerical coefficients times mono-

mials.

Much of the work goes into systematically de-

scribing these operators. The estimates them-

selves are quite elementary.
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Substitute an(t) = ein2tun(t) to get system

dan(t)

dt
= iω

∗∑
j−k+l=n

ajākale
iσ(j,k,l,n)t−iω|an|2an,

where

σ(j, k, l, n) = n2 − j2 + k2 − l2

= 2(n− j)(n− l)

when j − k + l = n.

Convention:
∑∗ denotes summation over all

j, k, l with j, k 6= l, n.

I’ll simplify and discuss the slightly simpler equa-

tions

dan(t)

dt
= iω

∗∑
j−k+l=n

aj(t)āk(t)al(t) eiσ(j,k,l,n)t.
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Rewrite as system of integral equations

an(t) = bn

+ iω
∗∑

j−k+l=n

∫ t

0
aj(s)āk(s)al(s)e

iσ(j,k,l,n)s ds.

By repeatedly substituting system into itself,

derive a formal Taylor series expansion of the

form

an(t) = bn

+ iω
∗∑

j−k+l=n

bj b̄kbl
eiσ(j,k,l,n)t − 1

iσ(j, k, l, n)

+ much more

where “more” denotes an infinite sum of higher-

order terms.

The denominators σ(j, k, l, n) are an essential

feature of the second term.
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The higher-order terms can in principle be calculated,
although in practice this is tedious because they become
increasingly complicated as their degrees increase.

A sample:

∗∑
j−k+l=n

∗∑
j1−j2+j3=j

∗∑
k1−k2+k3=k

∗∑
l1−l2+l3=l

I bj1b̄j2bj3b̄k1
bk2

b̄k3
bl1b̄l2bl3

where

I = I(t, j, k, l, j1, j2, j3, · · · , l3) =

∫
0≤r1,r2,r3≤s≤t

eiφ dr1 dr2 dr3 ds

with

φ = σ(j, k, l, n)s + σ(j1, j2, j3, j)r1

− σ(k1, k2, k3, k)r2 + σ(l1, l2, l3, l)r3.

This is a multilinear operator of degree 9, applied to
(b, b̄, b, b̄, · · · ).

There are infinitely many terms in the expansion. As

the degree increases, they become increasingly compli-

cated.
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A simple recursive analysis of the construction

of the Taylor expansion for a(t) establishes

Proposition. A solution a(t) of the infinite

coupled system of integral equations is given

formally by

an(t) =
∞∑

k=0

∑
T

cTST (t)(b∗, · · · , b∗)(n)

where for each k, the inner sum is taken over

O(Ck) ornamented trees T , each satisfying

|T | = 1 + 3k. Moreover |cT | = O(ck).

Each b∗ denotes either b or b̄.

ST (t) are multilinear operators of degrees 1+

2k, described below.
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Trees and associated multilinear operators

Terms in the Taylor expansion (about b = 0)

of the nonlinear operator b 7→ a(t) are naturally

indexed by a certain class of trees.

• These trees T are finite and rooted with root

r.

• Every vertex has either 0 children, or 3 chil-

dren.

Notation:

• T∞ denotes the set of all terminal vertices;

• T0 denotes the set of all nonterminal vertices.

• For any v ∈ T0, the three children of v are

denoted by (v, i), for i = 1,2,3.
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An ornamented tree T is a tree together with:
(i) For each v ∈ T there is given an element of
{−1,1}, denote by ±v.
(ii) An auxiliary space ZT . Elements of this
space are denoted by j = (jv)v∈T . (These are
the indices we’ll sum over.)

Define
(iii) For each v ∈ T0 and each j ∈ ZT ,

σv(j) = j2v − j2(v,1) + j2(v,2) − j2(v,3).

(These appear in exponents and reflect disper-
sive character of equation.)

(iv) Let coefficients εu ∈ {0,1,−1} be given for
each u ∈ T .

ρv(j) is defined recursively for all v ∈ T0 by

ρv(j) =

 σv(j) if every child of v is terminal

σv(j) +
∑

u εuρu(j) otherwise

where sum is over the 3 children u of v. (These
sums of exponents arise in describing higher-
order interactions.)

24



One more definition:

J(T ) ⊂ ZT is the set of all j ∈ ZT satisfying

jv = j(v,1) − j(v,2) + j(v,3) ∀ v ∈ T0

(reflecting the interaction relation j−k+ l = n

in system of ODEs)

{jv, j(v,2)} ∩ {j(j,1), j(j,3)} = ∅ ∀ v ∈ T0.

(reflecting the restriction j, l 6= k, n)
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Tree operators.

To any ornamented tree and any t ∈ R are
associated multilinear operators

ST (t)(xv)v∈T∞(n) =∑
j∈J(T ):jr=n

IT (t, j)
∏

v∈T∞
xv(jv).

Coefficients

IT (t, j) =
∫
R(T,t)

∏
u∈T0

(
e±uiωσu(j)tu dtu

)
for t ∈ R, j ∈ ZT where

R(T, t) = {(tu)u∈T0 : 0 ≤ tu ≤ tv ≤ t

whenever u ≤ v are elements of T0}.

This is a subset of [0, t]T
0
.

ST(t) is a multilinear operator of degree |T∞|. It takes

as input a |T∞|-tuple of complex-valued sequences xv,

and outputs a single complex-valued sequence, whose

n-th term is given by above formula.
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There is a trivial bound

|IT (t, j)| ≤ t|T
0|

for all T, t, j.

Lemma. For all T , j ∈ J(T ), and t ∈ [0,1],

|IT (t, j)| ≤ 2|T |
∑

(εu,i)

∏
v∈T0

〈ρv(j)〉−1.

The sum is taken over all possible vectors (εu,i :

u ∈ T0, i ∈ {1,2,3}), with each εu,i ∈ {−1,0,1}.
(ρv(j) depends on these εu,i.)

This is a rather complicated bound. Recall

that ρv(j) are defined recursively by

ρv(j) = σv(j) +
∑

u child of v

εuρu(j)

for nonterminal v, and = σv(j) = 2(jv−jv,1)(jv−
jv,3) for terminal v. Nothing prohibits cancel-

lation in these sums.
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Simplest bound available:∥∥∥∥ ∑
j∈J(T ):jr=n

∏
v∈T∞

|xv(jv)|
∥∥∥∥
`1(n)

≤
∏

v∈T∞
‖xv‖`1.

(Requires `1 norms, but doesn’t require any

gain from factors IT (t, j).)

Second simplest bound:∥∥∥∥ ∑
j∈J(T ):jr=n

∏
v∈T∞

〈σv(j)〉−1+δ|xv(jv)|
∥∥∥∥
`q(n)

≤ C|T | ∏
v∈T0

‖xv‖`p

provided p ∈ (1,∞), q > p/|T0|, and q ≥ 1.

There exists some small strictly positive δ =

δ(p, q) for which this holds.

Proof of `1 bound is just Fubini. Second uses

triangle inequality and Hölder.
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There has to be a catch.

The second simplest bound required coefficients

〈σv(j)〉−1+δ. Instead we have 〈ρv(j)〉−1.

ρv(j) is a quadratic polynomial in all variables

ju : u ≤ v; there can be arbitrarily many such

variables. There’s no hope of any simple fac-

torization as for σv(j). Worse, nothing pre-

vents cancellation in the sum. All we know is

|ρv(j)| ≤ (Ct)|T
0|.

This is not a defect in the analysis, simply

a reflection of the nature of the evolution.

Frequencies n1, n2, · · · with
∑

j nj = n interact

strongly when |n2− (
∑

j ±n2
j )| is not large. Ev-

eryone familiar with the analysis of Bourgain

will recognize this issue.
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What saves us is that there are few j for which

ρv(j) is not reasonably large.

Classify pairs (v, j) into two cases:

Good: |ρv(j)| ≥ c|σv(j)|1−η.

Bad: |ρv(j)| is not suitably large.

Bad case: Suppose for exposition that ρv(j) =

0. Then 2(jv−jv,1)(jv−jv,3) =
∑

u child of v

εuρu(j).

Thus (jv − jv,1) is a factor of
∑

u±ρu(j). The

latter depends only on those jw : w < v.

An integer N has O(Nε) factors for arbitrarily

small ε > 0.

Thus (jv− jv,1) can take on at most CεNε val-

ues, where N = maxu |ρu(j)| where u ranges

over the 3 children of v.
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Thus we can break our sum up into O(Nε)

subsums. In each, (jv−jv,i) are uniquely deter-

mined, for i = 1,2,3, as functions of other in-

dices jw. The factor |σv(j)|−1 is then no longer

needed.

The lost factor of O(Nε) is harmless if each

child u of v is good, for then we have factors

of 〈σu(j)〉−1 which can be used to absorb the

small loss since Nε〈σu(j)〉−1+η . 〈σu(j)〉−1+δ.

A small additional argument is needed to han-

dle chains of bad vertices (for given j), but we

won’t discuss that today.
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