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Let {Xj} be a collection of real vector fields with C∞ coefficients, defined in a neigh-
borhood of a point x0 ∈ Rd. Consider a second order differential operator L = −

∑
j X

2
j +∑

j αjXj + β where αj, β are C∞ real coefficients. A well known sufficient condition [17]

for L to be C∞ hypoelliptic is that the Lie algebra generated by {Xj} should span the
tangent space to Rd at x0. This bracket condition is by no means necessary; no satisfac-
tory characterization of hypoellipticity exists, and it appears unlikely that one could be
found. The purposes of this note are:

(1) To establish sufficient conditions for hypoellipticity for operators such as −
∑

j X
2
j ,

for the Kohn Laplacian on pseudoconvex three-dimensional CR manifolds, and for
the ∂̄–Neumann problem in C2, in the case of infinite type.

(2) To point out an inequality weaker than the subelliptic estimates which implies
hypoellipticity, and which is the weakest possible such inequality.

(3) To popularize within the ∂̄–Neumann community certain ideas developed in an-
other context.

(4) To emphasize the parallel between the theories of C∞ and analytic/Gevrey class
hypoellipticity.

This paper has undergone several revisions since its first version, written in the Spring of
1996. Although the results and methods employed here are new within the context of the
∂̄–Neumann problem, I have subsequently learned that when viewed in the wider context
of sums of squares of vector fields and related operators, they substantially overlap works
of other authors, some earlier and some contemporaneous, including but not limited to
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2 MICHAEL CHRIST

[19],[26],[27]; other selected relevant works are listed in the bibliography. Thus this paper
is in part expository.

It has subsequently been shown by Kohn [20] how some of these results may be extended
to �b and the ∂̄–Neumann problem in higher dimensions.

1. Examples

To orient the reader we review a few concrete examples of operators which need not
satisfy the bracket hypothesis. Consider three classes of operators:

L1 = −∂2
x − a2(x)∂2

t in R2

L2 = −∂2
x − a2(x)∂2

t − ∂2
y in R3

L3 = −∂2
x − a2(x)∂2

t − b2(x)∂2
y in R3

Assume that a, b ∈ C∞, that a, b are even and nonnegative, and are nondecreasing on
[0,∞), and that a(x) = 0 ⇔ x = 0. Concerning operators L3, assume that b(x) ≥ a(x)
for all x, and likewise that b(x) = 0 ⇔ x = 0.

Proposition 1.1. (Fedǐi [13]) Under the above hypotheses, all operators L1 are hypoellip-
tic.

Proposition 1.2. (Kusuoka and Stroock [21]) L2 is hypoelliptic if and only if

(1.1) lim
x→0

x log a(x) = 0.

This was originally proved by stochastic techniques; see Theorem 8.41 of [21]. To
indicate how these examples fit within the general context discussed in this paper, we will
indicate alternative proofs of Propositions 1.1 and 1.2.

Proposition 1.3. Suppose that the coefficients a, b ∈ C∞ vanish where x = 0 but nowhere
else, and that b(x) ≥ a(x) ≥ 0 for all x. If lim supx→0 |x log a(x)| 6= 0, and if the coefficient
b satisfies

(1.2) lim
x→0

b(x)x| log a(x)| = 0,

then L3 is hypoelliptic. Moreover, if some partial derivative of b is nonzero at x = 0, then
L3 is hypoelliptic if and only if (1.2) is satisfied.

This result was discovered independently by other authors. What is interesting about
this example is that increasing the size of b makes the operator L3 stronger in the sense
that the associated quadratic form 〈L3f, f〉 becomes larger for every f , but makes L3 less
likely to be hypoelliptic. In the context of analytic hypoellipticity such a phenomenon has
already been observed: Métivier [23] has shown that ∂2

x + (x∂t)
2 + (t∂t)

2 is not analytic
hypoelliptic, while the weaker operator ∂2

x +(x∂t)
2 is analytic hypoelliptic [15]. A parallel

result for Gevrey hypoellipticity is that when a(x) = xq and b(x) = xp with q ≥ p ≥ 1, L3

is hypoelliptic in the Gevrey class of order s if and only if b · a−1/s is bounded as x → 0
[7]; see also [5] and [24].



HYPOELLIPTICITY IN THE INFINITELY DEGENERATE REGIME 3

The next proposition is a special case of Theorem 2.5.3 of Olĕınik and Radkevič1 [28].

Proposition 1.4. Suppose that L = −
∑

j X
2
j where the Xj are smooth real vector fields

in some open set V . Suppose that at each point of V , at least one Xj is nonzero. Suppose
that {Xj} satisfies the bracket hypothesis at all but finitely many points of V . Then L is
hypoelliptic in V .

The analogue for Cω hypoellipticity is false; ∂2
x + (x∂t)

2 + (t∂t)
2 is elliptic except at a

single point, yet is not analytic hypoelliptic [23]. For other such examples in the analytic
and Gevrey class contexts see [8],[9].

2. Main results

Our results are most naturally formulated in a somewhat more general framework. De-
note by Sm

ρ,δ the usual classes of symbols for pseudodifferential operators [31],[32]. Denote

by Sm+
1,0 the intersection, over all ε > 0, of all classes Sm+ε

1−ε,ε. Given any class S of symbols,
we denote by Op(S) the associated class of pseudodifferential operators, with respect
to the quantization of the Kohn-Nirenberg calculus. In particular we consider classes
Op(Sm

ρ,δ), Op(Sm+
1,0 ) of operators.

All functions, distributions and symbols are permitted to be complex vector valued ex-
cept where otherwise noted; 〈u, v〉 denotes either a Hermitian pairing of square integrable
vector valued functions, or of test functions with distributions. The symbol ‖u‖, with
no subscript, denotes the L2 norm. For any open subset V ⊂ Rd, we denote by T ∗V
the complement of the zero section in the cotangent bundle of V . X∗ denotes the formal
adjoint of any operator X. Ck

0 (V ) and C∞
0 (V ) denote the classes of functions compactly

supported in V and belonging to Ck, C∞ respectively.
Fix an open neighborhood V of x0, and suppose L to be a linear operator mapping

D(V ) to D′(V ) taking the form

(2.1) L =
∑

j

X∗
jXj +

∑
j

AjXj +
∑

j

X∗
j Ãj + A0

where Xj ∈ Op(S1
1,0) and Aj, Ãj, A0 ∈ Op(S0

1,0). This sum and similar ones will always
be taken over all 1 ≤ j ≤ J for some unspecified integer J . More generally, we consider
any L ∈ S2

1,0 whose full symbol equals the full symbol of such an operator, in some conic
subset Γ ⊂ T ∗V .

A fundamental example is the Kohn Laplacian �b = ∂̄∗b ∂̄b + ∂̄b∂̄
∗
b defined on (p, q)

forms on any CR manifold; this is a second order system of partial differential operators
with complex coefficients.2 A closely related second example (up to composition with
a harmless elliptic factor) is the pseudodifferential Calderón operator for any smoothly
bounded domain in C2, arising from application of the boundary reduction method to the
∂̄–Neumann problem.

1The theorem cited concerns global hypoellipticity, but for operators hypoelliptic in U\{x0}, hypoel-
lipticity and global hypoellipticity in U are equivalent.

2It is not identical to the operator referred to by the same name in [22].
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Write 〈ξ〉 = (e2 + |ξ|2)1/2 for any ξ ∈ Rd. By log2(y) we mean (log y)2. By a conic open
subset of T ∗Rd we will always mean such a subset disjoint from the zero section. Denote
by Hs the usual Sobolev space of order s, and by WFHs(u) the Hs wave front set of a
distribution u. Denote by û the Fourier transform of u.

All operators studied in this paper will satisfy global inequalities of the form

(2.2)

∫
Rd

w2(ξ)|û(ξ)|2 dξ ≤ C
∑

j

‖Xju‖2 + C‖u‖2 for all u ∈ C1
0(V ),

where V is some fixed open set in which hypoellipticity is to be studied, C <∞ is a fixed
constant, and w is a strictly positive, continuous function satisfying

(2.3) w(ξ) →∞ as |ξ| → ∞.

This will either be assumed explicitly, or will be a consequence of other hypotheses.

Theorem 2.1. Let L take the form (2.1). Suppose that there exists a function w satisfying

(2.4)
w(ξ)

log〈ξ〉
→ ∞ as |ξ| → ∞

for which (2.2) holds. Then L is hypoelliptic in V . More precisely, for any s ∈ R and
u ∈ D′(V ),

(2.5) WFHs(u) ⊂ WFHs(Lu).

The hypothesis (2.4) is the optimal condition of its type. For instance:

Proposition 2.2. Operators of the type L2 discussed in Proposition 1.2 are hypoelliptic
if and only if they satisfy (2.4).

Moreover, the operator −∂2
x1
− ∂2

x2
− e−2/|x1|∂2

x3
in R3 satisfies the inequality (2.2) with

w(ξ) = log〈ξ〉, and fails to be hypoelliptic. See §5.
Theorem 2.1, and the observation that (2.4) is necessary for certain operators, are due

originally to Y. Morimoto. See for instance [25], [37], [26].
Nonetheless, it is important to understand that (2.4) is very far from being a necessary

condition for hypoellipticity. Consider for instance operators of the type L1, with a(x) = 0
if and only if x = 0. These all satisfy the compactness inequality (2.2) for some weight w
tending to ∞, but w may tend to infinity arbitrarily slowly; like operators L2, they satisfy
(2.4) if and only if x log a(x) → 0 as x → 0. Yet they are all hypoelliptic. The same
remarks apply to the operators with isolated degeneracies described in Proposition 1.4.

An equivalent formulation of (2.4) is that for each δ > 0 there should exist Cδ < ∞
such that for each real valued function u ∈ C2

0(V ),∫
Rd

log2〈ξ〉 |û(ξ)|2 dξ ≤ δ
∑

j

‖Xju‖2 + Cδ‖u‖2.

Further definitions are required in order to formulate our main result. A point x0 is
said to belong to the complement of the Hs singular support of a distribution u if there
exists a distribution v ∈ Hs such that v ≡ u in some neighborhood of x0. For any conic
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subset R ⊂ T ∗Rd, write u ∈ Hs(R) to mean that WFHs(u)∩R = ∅. Similarly u ∈ C∞(R)
means that WF (u) ∩R = ∅.

A set of vector fields {Xj} is said to satisfy the microlocal bracket hypothesis at a point
(x0, ξ0) of the unit cosphere bundle S∗V if some iterated Poisson bracket

{σ1(Xj1), {σ1(Xj2), . . . } . . . }(x0, ξ0)

of their principal symbols σ1(Xj) is nonzero [4]. Write Xj = Op(σ(Xj)). Recall that the
Poisson bracket of two functions f, g ∈ C1(T ∗Rd) is defined to be

(2.6) {f, g}(x, ξ) =
d∑

j=1

∂f

∂xj

∂g

∂ξj
− ∂g

∂xj

∂f

∂ξj
.

The principle underlying our analysis (when L is a sum of squares of vector fields Xj) is
that hypoellipticity is governed by a semiglobal comparison of (i) the Hamiltonian vector
fields associated to the principal symbols of {Xj}, with (ii) the size of those principal
symbols. The larger the latter, the more likely is an operator to be hypoelliptic; the larger
the former, the less likely. The following result and its variant Theorem 2.4, formulated
below, express this principle. Together they subsume all other sufficient conditions for
hypoellipticity formulated in this paper.

Main Theorem 2.3. Let R ⊂ T ∗V be any ray. Assume that L takes the form (2.1) in
some conic neighborhood of R, and satisfies (2.2) for some w ∈ C∞ such that w(ξ) →∞
as |ξ| → ∞.

Suppose that for each small conic neighborhood Γ of R there exist scalar valued symbols
ψ, p ∈ S0

1,0 such that ψ is everywhere nonnegative, ψ ≡ 0 in some smaller conic neighbor-
hood of R, ψ ≥ 1 on T ∗V \Γ, p ≡ 0 in a conic neighborhood of the closure of Γ, and such
that for each δ > 0 there exists Cδ < ∞ such that for any relatively compact open subset
U b V and for all u ∈ C2

0(U) and each index i,

(2.7) ‖Op
[
log〈ξ〉{ψ, σ(Xi)}

]
u‖2 ≤ δ

∑
j

‖Xju‖2 + Cδ‖u‖2 + Cδ‖Op(p)u‖2
H1 .

Then for any u ∈ D′(V ), Lu ∈ C∞(R) ⇒ u ∈ C∞(R). Likewise for each s ∈ R and any
u, Lu ∈ Hs(R) ⇒ u ∈ Hs(R).

Because {ψ, σ(Xi)} ∈ S0
1,0, the symbol of Op

[
log〈ξ〉{ψ, σ(Xi)}

]
is bounded by log〈ξ〉.

Hence Theorem 2.3 directly implies Theorem 2.1, by G̊arding’s inequality and pseudodif-
ferential calculus.

Two points require clarification, however. First, all norms are taken over V , and the
constants Cδ are permitted to depend on U . Note that because all pseudodifferential
operators occurring here are pseudolocal, an equivalent statement is obtained by taking the
L2 and H1 norms over an arbitrarily small neighborhood of the closure of U , rather than
over V . Second, L is assumed to take the form (2.1) only in a small conic neighborhood
of R; the symbols of the operators Xj ∈ Op(S1

1,0) are extended arbitrarily so that those
operators become globally defined. The conclusion (2.7) is independent of the choices of
extensions, because of the presence of the term involving Op(p)u on the right hand side.
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The main hypothesis is the existence of ψ having a favorable commutation relation with
each Xi. The symbol p plays a subsidiary role; its presence on the right hand side of the
inequality means that commutation with ψ need be controlled only near R.

We do not believe that there can be any simple characterization on the level of symbols
of those operators satisfying the hypotheses of Theorem 2.3, analogous to the bracket
hypothesis for subellipticity; this is a substantial weakness in the theory. It is a more
difficult problem to characterize pairs of pseudodifferential operators A,B ∈ S1

1,0 for which
B dominates A, in the sense that ‖Au‖ ≤ C‖Bu‖+ C‖u‖ for all functions u, for general
B than for subelliptic B, because the connection between the strength of an operator
and the size of its symbol becomes more tenuous when the symbol is permitted to vanish
somewhere to infinite order [14].

The next variant has weaker hypotheses and conclusion. An application will be given
below in Theorem 3.5.

Theorem 2.4. Let L take the form (2.1) in some open set V ⊂ Rd, and let x0 ∈ V .
Suppose that for each neighborhood U b V of x0 there exist scalar valued functions Ψ ∈
C∞(V ) and η ∈ C∞(V ) such that Ψ ≥ 0, Ψ ≡ 0 in a neighborhood of x0, Ψ ≥ c > 0 on
V \U , and Ψ > 0 on a neighborhood of the support of η. Suppose further that for every
δ > 0 there exists Cδ <∞ such that ψ(x, ξ) = Ψ(x) satisfies

(2.8) ‖Op
[
log〈ξ〉{ψ, σ(Xi)}

]
u‖2 ≤ δ

∑
j

‖Xju‖2 + Cδ‖u‖2 + Cδ‖ηu‖2
H1 ,

uniformly for all u ∈ C∞
0 (U). Then for any u ∈ D′(V ),

x0 /∈ singular support (Lu) ⇒ x0 /∈ singular support (u).

Moreover for any s ∈ R, if Lu belongs to Hs in some neighborhood of x0, then so does u.

Our analysis is based on conjugation with pseudodifferential operators of variable or-
der. It is related to certain variants3 of the FBI transform used to study Gevrey class
hypoellipticity in [7]. The use of operators having favorable commutation relations with
a given family of vector fields is a common technique, used for example in the work of
Sjöstrand [29],[30] and of Tartakoff and other authors on analytic hypoellipticity, and of
Boas and Straube [3] on global C∞ regularity in the ∂̄–Neumann problem. The same, or
closely related, methods are employed in [25], [19], [26], [27], and other works.

3. Some applications

The motivation for this work was fourfold. First, a theorem of Derridj and Zuily [11]
(together with its proof) asserts that for vector fields with real analytic coefficients4, a
subelliptic estimate of order ε implies that

∑
X2

j is hypoelliptic in the Gevrey class Gs

for all s ≥ ε−1; this exponent s is optimal, in general. Since ε → 0 as s → ∞, and since

3These variants take the form Fu(x, ξ) =
∫

exp(i(x− y) · ξ −Nψ(x, ξ) log〈ξ〉)u(y)η(y) dy, where η ∈
C∞0 is a cutoff function, N is a large parameter, and ψ ∈ C1

0 is an arbitrary nonnegative symbol.
4It suffices that the coefficients belong to Gs.
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Gs ⊂ C∞ for all s, this suggested that some limiting bound weaker than subellipticity
should suffice for C∞ hypoellipticity.5 Theorem 2.1 confirms this idea.

A second motivation was work of Bell and Mohammed [2], Kusuoka and Stroock [21]
and Malliavin [22] establishing hypoellipticity in certain nonsubelliptic cases by stochastic
methods. Consider any finite collection {Xj} of C∞ vector fields, defined in a neighbor-
hood V of x0 ∈ Rd. For k ≥ 1 denote by gk the C∞(Rd) module spanned by all Lie
brackets of the Xj having less than or equal to k factors. Assume:

(1) M ⊂ V is a C∞ hypersurface.
(2) There exist k and a collection of vector fields Zi,α ∈ gk, where 1 ≤ i ≤ d and α

ranges over some finite index set, which spans the tangent space to Rd at each
point of V \M .

(3) At each point of M , at least one vector field Xj is transverse to M .
(4) The coefficient

(3.1) β(x) =
∑

α

(
determinant(Zi,α)1≤i≤d

)2
(x)

degenerates weakly as x→M in the sense that

(3.2) lim
V 3x→M

distance (x,M) · | log β(x)| = 0.

The theorem of Bell and Mohammed asserts that a slightly stronger version of these
hypotheses implies hypoellipticity.6

Lemma 3.1. Let {Xj} satisfy the hypotheses enumerated above. Then for every relatively
compact open subset U b V and each small δ > 0 there exists Cδ < ∞ such that for all
u ∈ C∞

0 (U),

(3.3)

∫
log2〈ξ〉|û(ξ)|2 dξ ≤ δ

∑
j

‖Xju‖2 + Cδ‖u‖2.

Corollary 3.2. If a collection {Xj} of vector fields satisfies the hypotheses enumerated
above, then L = −

∑
j X

2
j is hypoelliptic.

I emphasize that these first two motivations have retroactively proved spurious, in the
sense that Theorem 2.1 was already known [25] to other authors.

A third motivation was the search for sufficient conditions for hypoellipticity of the ∂̄–
Neumann problem for smoothly bounded pseudoconvex domains of infinite type, a topic
closely linked to the theory of sums of squares of real vector fields, but calling for gener-
alizations involving complex vector fields, pseudodifferential operators, and systems, and

5The analogy between the hypotheses of Derridj and Zuily and those of Theorem (2.1) is imperfect;
inequality (2.2) with w(ξ) = 〈ξ〉ε suffices for G1/ε hypoellipticity, while w(ξ) = log〈ξ〉 is not quite sufficient
for C∞ hypoellipticity. This has to do with the different natures of the toplogies for Gs and for C∞, the
former being a countable union of Banach spaces, the latter a countable intersection.

6In [2] it was assumed that β(x) ≥ exp(−distance (x,M)−p) as x → M , for some p < 1. Morimoto
[25] had earlier established hypoellipticity under the sharp hypothesis distance (x,M) · | log β(x)| → 0, in
the special case k = 1 where all Zi,α in hypothesis (3.1) belong to the span of the Xj .
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thus perhaps not amenable to stochastic methods. The next result is a direct consequence
of Theorem 2.3, Lemma 3.1, and the method of reduction to the boundary as in [6].7

Corollary 3.3. Let Ω be a smoothly bounded pseudoconvex relatively compact open subset
of C2. Suppose that near x0 ∈ ∂Ω, the set of weakly pseudoconvex points of ∂Ω is contained
in a smooth hypersurface8 M , which is everywhere transverse to T 1,0⊕T 0,1(∂Ω). Suppose
also that the Levi form satisfies

lim
∂Ω3x→M

distance (x,M) · log λ(x) = 0.

Then the ∂̄–Neumann problem for (0, 1) forms on Ω is hypoelliptic in a neighborhood of
x0.

Here the Levi form is identified with a real-valued function.
This result is derived from the following consequence of Theorem 2.1.

Corollary 3.4. Let Ω ⊂ C2 be a bounded open set with C∞ boundary. Suppose that there
exists a symbol µ ∈ S1

1,0(∂Ω) which in any local coordinate system is real and nonnegative

modulo addition of a symbol in S0
1,0 and satisfies

µ(x, ξ)/ log〈ξ〉 → ∞ as 〈ξ〉 → ∞,

such that for every u ∈ C1
0(∂Ω),

‖Op(µ)u‖ ≤ C‖∂̄bu‖L2 + C‖∂̄∗bu‖+ C‖u‖L2

for some C <∞. Then the ∂̄–Neumann problem for Ω is C∞ hypoelliptic.

J. J. Kohn has asked whether hypoellipticity always holds in this context, provided that
the set of weakly pseudoconvex points consists of a smooth real curve that is everywhere
transverse to the complex tangent space, but without any restriction on the rate at which
the Levi form degenerates. In a forthcoming paper we will show that this is not the case,
even though quite weak supplemental hypotheses can suffice to imply hypoellipticity.

A fourth motivation was the hope that a more penetrating study of C∞ hypoellipticity
might shed light on the more intrinsically interesting Cω case. The present paper achieves
for the C∞ theory a rough parity with what is presently known, in the positive direction,
about analytic hypoellipticity.9

We now formulate a few variants of the main results. The next theorem and corollary are
rudimentary results, in which the symbols ψ required for the application of Theorems 2.3
and 2.4 may be constructed so that their gradients are supported in regions where L is
elliptic, or at least is subelliptic. The commutator bounds (2.7) and (2.8) then hold with
a great deal of room to spare.

7Our technique appears applicable to some extent in Cd for d > 2, but we have not carried out the
details of the boundary reduction. The formulation of Corollary 3.3 would require certain modifications;
for instance, for hypoellipticity on the level of (0, 1) forms, M should be assumed to have real dimension
d, and to be totally real.

8M is a submanifold of ∂Ω of real codimension one.
9A Cω analogue of Theorem 2.3 appears to be implicit in work of Grigis and Sjöstrand [16], although

we have not yet verified this in detail.
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Theorem 3.5. Suppose that L = −
∑

j X
2
j where the Xj are smooth real vector fields in

some open set V , satisfying (2.2) for some w ∈ C∞ such that w(ξ) → ∞ as |ξ| → ∞.
Suppose that the set of all points of V at which {Xj} fails to satisfy the bracket hypothesis
is totally disconnected. Then L is hypoelliptic in V . Moreover for any s ∈ R, for any
u ∈ D′(V ), the Hs singular support of u is contained in the Hs singular support of Lu.

If in addition the set of points of S∗V at which the microlocal bracket hypothesis fails
to be satisfied is totally disconnected, then the Hs wave front set of u is contained in the
Hs wave front set of Lu.

This implies a more precise formulation of Proposition 1.4.

Corollary 3.6. Suppose that L = −
∑

j X
2
j where the Xj are smooth real vector fields in

some open set V . Suppose that at each point of V , at least one Xj is nonzero. Suppose
that {Xj} satisfies the bracket hypothesis at all but finitely many points of V . Then for
any s ∈ R, for any u ∈ D′(V ), the Hs singular support of u is contained in the Hs singular
support of Lu.

If in addition the set of points of S∗V at which the microlocal bracket hypothesis fails
to be satisfied is finite, then the Hs wave front set of u is contained in the Hs wave front
set of Lu.

Our final theorem is one of various possible parabolic analogues. Let (x, t) ∈ Rd × R1

be coordinates in Rd+1.

Theorem 3.7. Let {Xj} be a collection of vector fields in Rd satisfying the hypotheses of
Theorem 2.1. Then ∂t −

∑
j X

2
j is hypoelliptic in Rd+1.

Throughout the discussion we assume L to satisfy a compactness inequality (2.2) with
w →∞. It is likely that a variant of Theorem 2.3 may be formulated and proved, in which
only an inequality ‖u‖H−m ≤ C‖Lu‖H0 is assumed; a correspondingly stronger hypothesis
depending on m must be imposed on ψ and the commutator operator to which it gives
rise. Although examples are certainly known of hypoelliptic operators that satisfy only
such weaker inequalities, we have not investigated the usefulness of such a generalization
in the analysis of concrete examples.

It is not clear to this author to what extent the hypothesis ψ ∈ S0
1,0 in Theorem 2.3 is

natural. Perhaps a variant in which ψ is permitted to belong to a less restricted symbol
class might also be useful in this context. Such variants appear for instance in [19],[25],[26].

For remarks and speculation concerning conditions on symbols characterizing hypoel-
lipticity, see [34] and [10].

4. Proofs of Theorems 2.1 and 2.3

By a pseudodifferential operator we will always mean an operator of the form

Op(a)f =

∫
Rd

eixξ a(x, ξ)f̂(ξ) dξ,

associated to the symbol a via the Kohn-Nirenberg calculus. These operators act on com-
pactly supported distributions. We do not always assume them to be properly supported
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in the sense that a(x, ξ) ≡ 0 for x outside a compact subset of Rd. However, pseudolocal-
ity ensures that if U1 b U2 ⊂ Rd are open, and if A,B are pseudodifferential operators
whose symbols each belong to one of the standard symbol classes Sm

ρ,δ with ρ > 0, and if

η ∈ C∞
0 (Rd) is ≡ 1 in a neighborhood of the closure of U2, then as an operator from E ′(U1)

to D′(U2), A ◦ η ◦B is independent of η, modulo an operator mapping E ′(U1) to C∞(U2).
Consequently when analyzing hypoellipticity in an open set V we will sometimes write
A ◦B to mean A ◦ η ◦B, where η is a cutoff function that is identically equal to one in a
neighborhood of V .

Denote by σ(P ) a symbol of a pseudodifferential operator P . We say that an operator
is smoothing of order M in the Sobolev scale if it maps Hs to Hs−M for all s ∈ R. A
natural setting10 for much of our reasoning will be the classes Sm,n ⊂ Sm+

1,0 , which by

definition consist of all a ∈ C∞(Rd × Rd) satisfying

|∂α
x∂

β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β|[log〈ξ〉]n+|α|+|β|

for all α, β, (x, ξ). Certain manipulations performed below without comment are justified
by well known basic properties of the operators associated to symbols in the latter class,
such as the symbolic calculus and pseudolocality [32].

We begin with the proof of Theorem 2.1, then will later indicate how it should be
modified to derive the more general Theorem 2.3. Let u ∈ D′(V ) and s ∈ R be given.
Suppose the Hs wave front set of Lu to be disjoint from some conic open neighborhood Γ0

of (x0, ξ0) ∈ T ∗V . Without loss of generality we may assume u ∈ E ′(V ). Fix K such that
u ∈ H−K . Given any s ∈ R, our aim is to show that (x0, ξ0) /∈ WFHs(u) by constructing
a pseudodifferential operator Λ which is elliptic of order s in a conic neighborhood of
(x0, ξ0), and for which it can be shown that Λu ∈ H0(Rd).

To do this fix a small conic open neighborhood Γ1 of (x0, ξ0) whose intersection with
the unit cosphere bundle is a compact subset of Γ0. Fix an auxiliary function φ(x, ξ) ∈
C∞(Rd × Rd\{0}) that is homogeneous of degree zero with respect to ξ, is everywhere
nonnegative, vanishes identically in a small conic neighborhood of (x0, ξ0), and is strictly
positive on the complement of Γ1.

Define a symbol of nonconstant order, depending on parameters s,N0, by

(4.1) λ(x, ξ) = |ξ|se−N0 log |ξ|φ(x,ξ)

where |ξ| ≥ e, and define λ for |ξ| < e so as to be C∞ and nowhere vanishing. The
nonnegativity of φ implies that λ ∈ Ss+

1,0. Moreover, λ ∈ Ss,0.

With s fixed, there exists δ > 0 such that for each N0, λ ∈ S−δN0+
1,0 on the closure of

the complement of Γ1. Choose N0 so that −δN0 < −K. Then Λu ∈ H−K+δN0 ⊂ H0

microlocally on the complement of Γ1.
Now L acts on sections of some bundle, and each Xj maps sections of that bundle to

sections of some bundle Wj, whose rank may well depend on j. Restricting the analysis
to a small open subset of Rd, we may assume all these bundles to be trivial, and we fix

10Instead of the symbol class Sm,n and Kohn-Nirenberg quantization one could employ the Weyl
calculus of Hörmander [18], associated to the metric g = log2〈ξ〉 dx2 + log2〈ξ〉〈ξ〉−2 dξ2.
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trivializations of them. Define Λ = Op(λ·I) where I denotes the identity matrix. Likewise
define Λj = Op(λ · Ij), acting on sections of Wj, where Ij is an identity matrix whose
dimension equals the rank of Wj.

Fix cutoff functions ηk ∈ C∞
0 (Rd) such that η2 ≡ 1 in a neighborhood of the support of

u, η1 ≡ 1 in a neighborhood of the support of η2, and η1 is supported in V .
Recall that if a, b are symbols in some classes Sm

ρ,δ and Sn
ρ,δ, if b is properly supported,

and if ρ > δ, then Op(a) ◦Op(b) has a symbol a� b with an asymptotic expansion

(4.2) a� b(x, ξ) ∼
∑

α

cα∂
α
ξ a(x, ξ)∂

α
x b(x, ξ)

where cα = (α!)−1(−i)α. The notation ∼ indicates convergence in the usual asymptotic
sense: for any positive integer N , the difference between Op(a) ◦ Op(b) and an operator
associated to the symbol

∑
|α|<N cα∂

α
ξ a(x, ξ)∂

α
x b(x, ξ) is smoothing of orderm+n−N(ρ−δ)

in the scale of Sobolev spaces.

Lemma 4.1. There exists an operator, denoted Λ−1, belonging to Sm+
1,0 for some m =

m(s), such that Λ ◦ Λ−1 − I is smoothing of infinite order in the Sobolev scale. Moreover
such an operator may be constructed with a symbol of the form (1 + f)λ−1 · I, where
f ∈ S−1,2. Likewise there exist operators Λ−1

j of the same form (1 + fj)λ
−1 · Ij, such that

each Λj ◦ Λ−1
j − Ij is smoothing of infinite order.

Proof. Write f ∼
∑

k≥1 fk. Solve the equation λ� ((1 + f)λ−1) ∼ 1, using (4.2) and the

usual iterative procedure. One obtains f1 ∈ S−1,2, and by induction, each fk ∈ S−k+
1,0 .

Choose Λ to be an operator whose full symbol has asymptotic expansion
∑

k≥1 fk; such
operators exist [31], [32]. The same method of construction yields Λj. �

Lemma 4.2. Suppose that L takes the form (2.1). Then there exists a pseudodifferential
operator G of the form

(4.3) G =
∑

j

Bj ◦Xj +
∑

j

X∗
j ◦ B̃j +B0

where B0 ∈ Op(S0,2) and Bj, B̃j ∈ Op(S0,1) for each j ≥ 1, such that

(4.4) (L+G)η1Λη2 = η1ΛLη2 +R

for some R belonging to Op(S−M+
1,0 ) for every M <∞.

Proof of Lemma 4.2. Throughout the argument, R denotes an operator belonging to S−M+
1,0

for all M , which may change from one line to the next. In constructing the symbol of G
we work formally, ignoring the cutoff functions ηj; this is permissible by pseudolocality,
because η2η1 ≡ η2. The desired equation (L+G)Λ = ΛL+R is then equivalent to

G = ΛLΛ−1 − L+RΛ−1 =
∑

j

[
ΛX∗

jXjΛ
−1 −X∗

jXj

]
+RΛ−1

=
∑

j

[
(ΛX∗

j Λ−1
j )(ΛjXjΛ

−1)−X∗
jXj

]
+RΛ−1.
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Consider ΛjXjΛ
−1 = Xj + (ΛjXj −XjΛ)Λ−1 +R. The symbol of ΛjXj −XjΛ divided

by λ equals the Poisson bracket {log λ, σ(Xj)} plus an element of S−1,2, as follows from
(4.2). Applying the composition formula (4.2) once more we conclude

(4.5) ΛjXjΛ
−1 = Xj + Op({log λ, σ(Xj)}) modulo Op(S−1+

1,0 ).

A corresponding assertion holds for ΛX∗
j Λ−1

j , with σ(X∗
j ) substituted for σ(Xj) in the

Poisson bracket. Since {log λ, σ(Xj)} and {log λ, σ(X∗
j )} belong to S0,1, inserting these

equations into the identity derived for G in the preceding paragraph completes the proof.
�

Lemma 4.3. Let G be a pseudodifferential operator of the form (4.3). Then for any fixed
relatively compact subset U ⊂ V , any δ > 0 and any f ∈ C∞

0 supported in U ,

(4.6) |〈Gf, f〉| ≤ Cδ

∫
log2〈ξ〉 |f̂(ξ)|2 dξ + δ

∑
j

‖Xjf‖2
L2 .

This lemma follows from G̊arding’s inequality (and its proof, adapted to Op(S1+
1,0)). One

uses the nonnegativity of C log2〈ξ〉 minus the symbol of B0, provided that C is chosen to
be sufficiently large, along with the inclusions Bj, B

∗
j ∈ S0,1. The detailed verification is

left to the reader.

Lemma 4.4. Let L take the form (2.1) and satisfy (2.4). Let s,M ∈ R be fixed. If N0 is
chosen to be sufficiently large in the definition of Λ, then for any fixed relatively compact
subset U b V and any u ∈ Cs+3(U),

(4.7) ‖η1Λu‖L2 ≤ C‖η1ΛLu‖L2 + C‖u‖H−M .

All norms without subscripts in the following argument are L2 = H0 norms.

Proof. We have (L+G)η1Λη2u = η1ΛLη2u, and η2u ≡ u. Thus setting v = η1Λu ∈ C2,〈
(L+G)v, v

〉
=

∑
j

‖Xjv‖2 + ‖v‖2
)

+O
(
‖v‖ · ‖Gv‖

)
.

Invoking Lemma 4.3 we find that∑
j

‖Xjv‖2 ≤ ‖η1ΛLu‖2 + ‖Ru‖2 + C‖v‖2 + C‖Gv‖2

≤ ‖η1ΛLu‖2 + ‖Ru‖2 + C‖v‖2 + Cδ

∫
log2〈ξ〉 |v̂(ξ)|2 dξ + δ

∑
j

‖Xjv‖2.

The error term R maps H−M to L2, and ‖v‖2 is majorized by
∫

log2〈ξ〉|v̂|2dξ. Choosing
δ < 1, the last term on the right hand side may be absorbed into the left, yielding∑

j

‖Xjv‖2 ≤ C

∫
log2〈ξ〉 |v̂(ξ)|2 dξ + ‖η1ΛLu‖2 + C‖u‖2

H−M .
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We finally invoke the hypothesis (2.4) in the form∑
j

‖Xjv‖2 ≥ A

∫
log2〈ξ〉 |v̂(ξ)|2 dξ − CA‖v‖2

for arbitrarily large A to deduce that∫
log2〈ξ〉 |v̂(ξ)|2 dξ ≤ C‖η1ΛLu‖2 + C‖u‖2

H−M + C‖v‖2

for some constant C. ‖v‖ may be majorized by an arbitrarily small constant times the left
hand side plus a large constant times the H−M−s norm of v. η1Λη2 maps H−M boundedly
to H−M−s, so ‖v‖H−M−s ≤ C‖u‖H−M . Thus

‖v‖2 ≤
∫

log2〈ξ〉|û(ξ)|2 dξ ≤ C‖η1ΛLu‖2 + C‖u‖2
H−M .

�

Proof of Theorem 2.1. It remains to remove the smoothness assumption on u and to con-
vert the a priori estimate to the desired conclusion Λu ∈ H0. To accomplish this fix an
auxiliary function r ∈ C∞(Rd) that is strictly positive, and satisfies r(ξ) ≡ |ξ|−1 for all
|ξ| ≥ 2, and r(ξ) ≡ 1 for all |ξ| ≤ 1. Fix a large exponent q. For all small ε > 0 define a
mollified symbol

(4.8) λε(x, ξ) = rq(εξ) · λ(x, ξ)

where λ is as defined in (4.1). and let Λε = Op(λε). The symbols rε = rq(εξ) satisfy

(4.9) |∂α
ξ rε/rε| ≤ Cα,q|ξ|−|α|, uniformly in ε and ξ ∈ Rd.

If q is chosen to be sufficiently large relative to the order of the distribution u, then
Λεu ∈ C2 for all ε > 0, and because λ is elliptic of order s in a conic neighborhood of
(x0, ξ0), it suffices to show that the L2 norm of η1Λεu remains uniformly bounded as ε→ 0.
But Lemma 4.4 fails to apply directly, because u is merely known to be a distribution,
not a function in Cs+3 as hypothesized.

The parameter N0 in (4.8) may be chosen sufficiently large that η1ΛLu ∈ L2, because
φ is strictly positive in a conic neighborhood of the Hs wave front set of u, and hence Λ
is regularizing there of order at least s − δN0 for some constant δ > 0. The L2 norm of
η1ΛεLu is bounded uniformly in ε and tends to the L2 norm of η1ΛLu.

As in the proof of Lemma 4.4 we have for each ε > 0 an operator Gε and an identity
(L + Gε)η1Λεu = η1ΛεLu + Ru with both sides of the equation in C2 for each ε > 0.
Moreover (4.9) ensures that the proof of Lemma 4.2 carries through for each ε > 0 with
Λ replaced by Λε, so that Gε takes the form (4.3), with each pseudodifferential coefficient
Bj in the class indicated in Lemma 4.2, and with all bounds uniform in ε. All functions
have sufficient differentiability for the proof of Lemma 4.4 and this identity to yield

‖η1Λεu‖L2 ≤ C‖η1ΛεLu‖L2 + C‖u‖H−M ,

uniformly as ε→ 0. Thus the L2 norm of η1Λεu remains bounded as ε→ 0. �
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The proof of Lemma 4.2 yields the following more precise conclusion, which will be used
to prove Theorem 2.3.

Lemma 4.5. Let Λ be any pseudodifferential operator whose symbol λ takes the general
form λ(x, ξ) = |ξ|s exp

(
− N log |ξ|ψ(x, ξ)

)
for large |ξ| where ψ ∈ S0

1,0. Suppose that L

takes the form (2.1). Define bj = Op({log λ, σ(X∗
j )}) and b̃j = Op({log λ, σ(Xj)}). Then

there exists a pseudodifferential operator G of the form (4.3) satisfying (4.4), with

(4.10)

Bj = bj + cj and B̃j = b̃j + c̃j for every j ≥ 1

B0 =
∑

j

(
bj ◦ b̃j + Aj b̃j + Ãjbj

)
modulo Op(S−1,2)

where each cj, c̃j ∈ Op(S−1,1), and where Aj, Ãj ∈ S0
1,0 are the coefficients in (2.1).

Lemma 4.6. Suppose that L, ψ, p satisfy the hypotheses of Theorem 2.3, and that

(4.11) λ(x, ξ) = |ξ|s exp(−N log〈ξ〉ψ(x, ξ)) for large |ξ|.

Then for any N ≥ 0 and for any fixed relatively compact subset U ⊂ V , any δ > 0 and
any f ∈ Cs+3 supported in U , the operator G constructed in Lemma 4.2 satisfies

(4.12) |〈Gf, f〉| ≤ δ
∑

j

‖Xjf‖2 + Cδ‖f‖2 + Cδ‖Op(p)f‖2
H1 .

This follows directly from (4.10) and the hypothesis (2.7).

Lemma 4.7. Let L, ψ, p satisfy the hypotheses of Theorem 2.3, and let λ be defined by
(4.11). Let s,M be fixed. If N is chosen to be sufficiently large in the definition of λ then
for any fixed relatively compact subset U ⊂ V and any u ∈ C∞

0 (U),

‖η1Λu‖L2 ≤ C‖η1ΛLu‖L2 + C‖u‖H−M .

This follows from the same reasoning as in the proof of Lemma 4.4, using the hypotheses
on ψ and Lemma 4.6. The smoothness assumption can be removed, and the a priori
estimate converted to the conclusion η1Λu ∈ L2, as above. The term involving the H1

norm of Op(p)Λu may be absorbed into ‖u‖−M , because Λ may be made to be regularizing
of arbitrarily high order in a conic neighborhood of the support of the symbol p, by
choosing N to be sufficiently large. This completes the proof of Theorem 2.3. Theorem 2.4
is proved in the same way.

5. Analysis of examples

The purpose of this section is to analyze the three classes of examples Lj discussed in
the introduction. It will be convenient to assume that a(x) → ∞ as |x| → ∞; this has
no effect on the question of hypoellipticity. Fix a and define L = Lτ = −∂2

x + τ 2a2(x).
Define λ0 = λ0(τ) to the infimum of 〈Lf, f〉1/2/‖f‖L2 over all 0 6= f ∈ C2

0(R). The
notation A ∼ B will mean that A/B is bounded above and below by positive constants,
independent of τ as τ → +∞.
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Lemma 5.1.

(5.1) λ0 ∼ min
0<y<∞

(
y−1 + τa(y)

)
.

Proof. To obtain the upper bound for λ0 it suffices to fix a test function ϕ ∈ C1
0(R)

supported in {|x| < 1}, and to consider ϕ(x/y) for arbitrary y. The conclusion is that λ0 ≤
C(y−1 + max|x|≤y τa(x)), which is the required upper bound because of the monotonicity
of a.

For a lower bound, consider any y > 0. For any ϕ ∈ C2
0 , 〈Lϕ, ϕ〉 = ‖∂xϕ‖2 +∫

τ 2a2(x)ϕ2(x) dx. Now∫
|x|≥y

τ 2a2ϕ2 dx ≥ τ 2[min
|x|≥y

a2(x)]

∫
|x|≥y

ϕ2 dx.

Also ∫
|x|<y

ϕ2 dx ≤ C

∫
y<|x|<2y

ϕ2 dx+ Cy2‖∂xϕ‖2.

Thus

(5.2) ‖ϕ‖2 ≤ C
(
τ−2[min

|x|≥y
a(x)]−2 + y2

)
〈Lϕ, ϕ〉 for any y > 0.

We now invoke the monotonicity of a to choose the unique y satisfying y−1 = τa(y).
Then y−1 is comparable to the minimum in (5.1), since the functions x−1 and τa(x) are
respectively nonincreasing and nondecreasing on R+. Thus (y2 + τ−2a(y)−2) ≤ C(y−1 +
τa(y))−2, as desired. �

Lemma 5.2. Assume that a is even and nonnegative, vanishes only where x = 0, is
nondecreasing on [0,∞) and that a(x) →∞ as x→ +∞. Then

lim
τ→∞

λ0(τ)

log τ
= ∞⇐⇒ lim

x→0
x log a(x) = 0.

Proof. Given any large τ ∈ R+, define y ∈ R+ by y−1 = τa(y). Then λ0(τ) ∼ y−1, as
observed in the proof of Lemma 5.1. Thus

log τ/λ0(τ) ∼ y log τ = y| log[ya(y)]| ∼ y log a(y).

Thus if x log a(x) → 0 as x→ 0, then λ0(τ)/ log τ →∞ as τ →∞.
Conversely if a small x > 0 is given, define τ = x−1a(x)−1. Then τ →∞ as x→ 0, and

again λ0(τ) ∼ x−1, so

λ0(τ)/ log τ ∼ x−1/ log(x−1a(x)−1) ∼ |x log a(x)|−1.

The converse implication follows directly. �

In the next lemma we omit the hypothesis that a is nondecreasing.

Lemma 5.3. If x log a(x) → 0 as x→ 0 and a(x) →∞ as |x| → ∞, then λ0(τ)/ log τ →
∞ as τ →∞.
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Proof. The proof of (5.2) did not utilize the hypothesis that a was nondecreasing. Given
merely that limx→0 x log a(x) = 0, then for each δ > 0 there exists cδ > 0 such that
a(x) ≥ cδ exp(−δ/2|x|) as x → 0. When y = δ/ log τ , the factor on the right in (5.2)
becomes

y + τ−1[min
|x|≥y

a(x)]−1 ≤ δ/ log τ + Cδτ
−1 exp(δ log τ/2δ) ≤ Cδ/ log τ

for all sufficiently large τ , with C ′ independent of δ, τ . Given any τ so large, applying
(5.2) with these choices of δ and of y yields λ0(τ) ≥ cδ−1 log τ . �

Lemma 5.4. For any coefficient a ∈ C∞, if L2 is hypoelliptic in some neighborhood of 0,
then λ0(τ)/ log τ →∞ as τ → +∞.

Proof. The coefficient a(x) may be assumed to tend to +∞ as |x| → ∞. Then each
operator Lτ is an essentially self-adjoint operator on L2(R), with a discrete spectrum
tending to +∞. Its lowest eigenvalue is λ2

0(τ). There exists an associated eigenfunction
fτ that is strictly positive everywhere, is even, and assumes its maximum value at x = 0.
Normalize it so that fτ (0) = 1. Define a solution to LFτ ≡ 0 by

Fτ (x, y, t) = eiτteλ0(τ)yfτ (x).

Suppose L2 to be hypoelliptic in some small bounded neighborhood V of 0. Then by
the Baire category theorem, for each positive integer k there must exist C <∞ such that
for every F ∈ C0(V ) satisfying L2F ≡ 0 in V ,

(5.3) |∂k
t F (0)| ≤ C‖F‖L∞(V ).

Considering any large τ ∈ R+ and taking F = Fτ , the right hand side of (5.3) is bounded
by C exp(λ0(τ)) since |fτ | ≤ 1. The left hand side equals |τ kfτ (0)| = τ k. Therefore for any
k there must exist Ck <∞ such that τ k ≤ Cke

λ0(τ). Thus λ0(τ)/ log τ ≥ k− logCk/ log τ ,
whence lim infτ→∞(λ0(τ)/ log τ) ≥ k. �

This argument is parallel to that used by many authors to disprove analytic or Gevrey
class hypoellipticity for various classes of examples.

Proof of Proposition 1.2. Combining Lemmas 5.2 and 5.4, we find that if L2 is hypoelliptic
then x log a(x) tends to 0 as x→ 0.

Let (x, t; ξ, τ) be coordinates in T ∗R2. If x log a(x) → 0, then λ0(τ)/ log τ → ∞. To
relate this information to

∫∫
log2〈(ξ, τ)〉|û(ξ, τ)|2 dξdτ , observe that L2 is elliptic except

where ξ 6= 0. Therfore by a microlocalization it suffices to majorize the integral over the
region |τ | ≥ |ξ|. Replacing log〈(ξ, τ)〉 by log〈τ〉,∫∫

log2〈τ〉|û(ξ, τ)|2 dξdτ = c

∫∫
log2〈τ〉|ũ(x, τ)|2 dxdτ

where ũ denotes the partial Fourier transform with respect to the second coordinate. For
each τ ,

log2〈τ〉
∫
|ũ(x, τ)|2 dx ≤ log2〈τ〉λ0(τ)

−2

∫
|(X1u(x, τ))̃ |2 + |(X2u(x, τ))̃ |2 dx.
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Because log τ/λ0(τ) → 0, this leads to the superlogarithmic inequality (2.4) by splitting
the analysis into two cases |τ | ≥ A and |τ | < A, and choosing A = A(δ) to tend to ∞
sufficiently rapidly as δ → 0.

Lastly (2.4) implies that L2 is hypoelliptic, by the general Theorem 2.1. �

The reasoning used above to estimate λ0(τ) can be modified to prove that if a ∈
C∞ vanishes so rapidly at 0 that for any A < ∞ there exists CA such that |a(x)| ≤
CA exp(−A|x|−1) as x → 0, then λ0(τ)/ log τ → ∞, and consequently L2 fails to be
hypoelliptic.

Proof of Proposition 1.1. Write L1 = −∂2
x1
− a2(x1)∂

2
x2

in coordinates x = (x1, x2), and
let ξ = (ξ1, ξ2) be dual coordinates. Set X1 = ∂x1 , X2 = a(x1)∂x2 . Let R = {(x, ξ) :
x = 0, ξ1 = 0, ξ2 > 0}. The principal symbol of L1 vanishes precisely on the symplectic
manifold where x1 = ξ1 = 0. Since L1 is invariant under translation with respect to x2,
and reflection about the origin, it suffices to prove that Lu ∈ Hs(R) ⇒ u ∈ Hs(R).

In order to apply Theorem 2.3 we set p ≡ 0 and seek to construct ψ having favorable
commutation properties. Given any number ρ > 0, there exists ψ ∈ C∞(T ∗V ) that is
homogeneous of degree zero with respect to ξ, is ≡ 1 where |(x1, x2, ξ1/ξ2)| ≥ 3ρ, is ≡ 0
where |(x1, x2, ξ1/ξ2)| ≤ ρ, and depends only on x2 where |(x1, ξ1/ξ2)| ≤ 2ρ. In order to
apply Theorem 2.3, we must verify that Op[log〈ξ〉{ψ, σ(Xi)}] is controlled by X1, X2 in
the sense (2.7). Microlocally where (x1, ξ1) 6= 0, L = X2

1 +X2
2 is elliptic, so we have better

control than is needed. Therefore it suffices to work microlocally where |(x1, ξ1/ξ2)| < ρ.
In this region {ψ, σ(X1)} ≡ 0, while {ψ, σ(X2)}(x, ξ) ≡ ia(x1)∂ψ/∂x2. Since ∂ψ/∂x2 ∈

S0
1,0 and because of the microlocalization to |ξ1| � ξ2, it suffices to verify that the quantity
‖Op[log〈ξ2〉a(x1)]u‖ is majorized by δ‖X2u‖+Cδ‖u‖, for all u supported where |x| < 3ρ.
This majorization follows from an application of the partial Fourier transform with respect
to x2, since log〈ξ2〉/ξ2 → 0 as ξ2 → +∞. �

Proof of Proposition 1.3. Let x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3) and L3 = −∂2
x1
− b2(x1)∂

2
x2
−

a2(x1)∂
2
x3

= −X2
1 − X2

2 − X2
3 . Now the principal symbol of L3 vanishes only where

x1 = ξ1 = 0. As in the proof of Proposition 1.1, it suffices to work near where x1 =
x2 = ξ1 = 0. Again let p ≡ 0. Given any small number ρ > 0 we may construct ψ so as
to have all properties required of it in Theorem 2.3, and in addition to be independent
of x1, ξ1 where |(x1, ξ1/|ξ|)| < ρ. Microlocalizing to a small conic neighborhood of the
nonelliptic region for L3 as in the proof of Proposition 1.1, we have {ψ, σ(X1)} ≡ 0,
{ψ, σ(X2)} ≡ ib(x1)∂ψ/∂x2, and {ψ, σ(X3)} ≡ ia(x1)∂ψ/∂x3. Because b ≥ a, the analysis
is straightforward where |ξ2| ≥ |ξ3|, using the partial Fourier transform with respect to
(x2, x3).

Where |ξ3| ≥ |ξ2|, we must majorize in terms of ∂ũ/∂x1 and a(x1)ξ3ũ(x1, ξ2, ξ3) the
L2(dx1) norm of the partial Fourier transform log〈ξ3〉b(x1)ũ(x1, ξ2, ξ3); the contribution of
X2u is of no use since ξ2 could vanish.

It now suffices to show that under the hypothesis b(x)x log a(x) → 0, for all τ ∈ R+

(5.4) log τ‖bϕ‖ ≤ ε(τ)‖ϕ′‖+ ε(τ)‖aτϕ‖ for all ϕ ∈ C1
0(R1),

where ε(τ) → 0 as τ → +∞ and each norm is that of L2(R1).
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For the remainder of the discussion, x denotes an element of R1. In the course of the
proof of Lemma 5.1 it was shown that for any smooth even coefficient a vanishing only at
x = 0 and nondecreasing on R+,

‖∂xu‖2 + ‖τa · u‖2 ≥ c

∫
τ 2 max(a2(x), a2(r))|u2(x)| dx for all u ∈ C1

0(R),

where r = r(τ) is chosen so that r−1 = τa(r). Therefore (5.4) would be a consequence of
the majorization

(5.5) b(x) log τ ≤ ε(τ)τ max(a(x), a(r(τ)))

uniformly in x, where ε(τ) → 0 as τ →∞.
The definition of r implies that log τ = log r−1+log a−1(r) ∼ log a−1(r) and τa(r) = r−1,

so that when x = r, [b(r) log τ ]/[τa(r)] ∼ b(r)r| log a(r)| = ε(τ), which indeed tends
to zero as τ → ∞ by hypothesis. Since b is nondecreasing on R+, this implies that
b(x) log τ ≤ ε(τ)τa(r) for all |x| ≤ r. Write δ(x) = b(x)x| log a(x)|. Then for x > r,

b(x) log τ

τa(x)
≤ δ(x) log τ

x| log a(x)|τa(x)
∼ δ(x) · ra(r)| log a(r)|

xa(x)| log a(x)|
≤ Cδ(x)

r

x
.

If x ≥ r1/2 this is bounded by Cr1/2, which tends to zero as τ → ∞. If x ≤ r1/2 it is
bounded by min0<t<r1/2 δ(t), which also tends to zero as τ → ∞. Thus (5.5) is indeed
valid.

That hypoellipticity of L3 implies (1.2) when b vanishes to finite order follows from
reasoning similar to that underlying Lemmas 5.1 and 5.2. The details are left to the
reader. �

The above analysis shows that the nonhypoelliptic example L2 = −∂2
x − a2(x)∂2

t − ∂2
y ,

with coefficient a(x) = exp(−1/|x|), does satisfy the inequality (2.2) with the borderline
weight w(ξ) = log〈ξ〉.

6. Proofs of Theorem 3.5 and Lemma 3.1

Proof of Lemma 3.1 . Since the bracket hypothesis is satisfied on the complement of M ,
it is no loss of generality to assume U to be a small neighborhood of a point x0 ∈M , and
to assume that β(x) 6= 0 for all x ∈ U\M .

Let A = (I −∆)1/2. Fix U and consider any u ∈ C∞
0 (U). It is known [32] that for any

k and any Z ∈ gk,

(6.1) ‖ZA−1+2−k

u‖2 ≤ C
∑

‖Xju‖2 + C‖u‖2.

This is a key step in one proof of hypoellipticity of sums of squares operators satisfying
Hörmander’s bracket hypothesis [32], but its proof does not require that hypothesis.

Consider any smooth vector field Y . By Cramer’s rule we may express Y =
∑

i,α ci,αZi,α

where the coefficients c are smooth on V \M and are O(β−1/2) as x → M . Therefore
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β(x)∇x may be expressed as
∑

i,α c̃i,αZi,α where the vector valued coefficients c̃(x) are

uniformly bounded on U . Thus there exists δ > 0 such that

‖β∇xA
−1+δu‖2 ≤ C

∑
‖Xju‖2 + C‖u‖2.

Since β ∈ C∞, this implies that

(6.2) ‖βAδu‖2 ≤ C
∑

‖Xju‖2 + C‖u‖2.

Fix coordinates (s, y) ∈ R×Rd−1 in which M = {s = 0}, and in which one of the vector
fields Xj equals ∂s. In order to deduce the superlogarithmic gain estimate (3.3), it now
suffices11 to show that under the hypothesis (3.2),

(6.3)

∫
log2〈ξ〉 |û(ξ)|2 dξ ≤ ε

(
‖∂su‖2 + ‖βAδu‖2

)
+ Cε‖u‖2

for all ε, u.
Fix an auxiliary function h ∈ C∞

0 (R+) that is supported on [1/2, 4] and is identically

equal to 1 on [1, 2]. Fix a second such function h̃ ∈ C∞
0 (R+) that is identically equal

to one on the support of h. Fix η ∈ C∞
0 (Rn) supported in a small neighborhood of

the closure of U , and ≡ 1 in a smaller neighborhood of its closure. Let Pt, P̃t be the
pseudodifferential operators with symbols η(x)h(|ξ|/t), η(x)h̃(|ξ|/t), respectively. We seek
a bound for log(t)‖Ptu‖, for t ≥ e.

The hypothesis (3.2) plus Lemma 5.3 with τ = tδ give

log2(t)

∫
|g(s)|2 ds ≤ ε(t)

∫
|∂sg|2(s) ds+ ε(t)t2δ

∫
β2(s, y)|g|2(s) ds

for all g supported in a sufficiently small neighborhood of s = 0, where ε(t) → 0 as
t → ∞ and ε is a nonincreasing function of t. This inequality is uniform in y. Setting
g(s) = Ptu(s, y) and integrating both sides of the preceding inequality with respect to y
yields

log2(t)‖Ptu‖2 ≤ ε(t)‖∂sPtu‖2 + ε(t)t2δ‖βPtu‖2 + CN t
−N‖u‖2

for all N ; this last term arises because Ptu will not have compact support and hence must
be truncated. Similar terms in estimates below arise in the same way. By pseudodiffer-
ential calculus,

‖∂sPtu‖2 + t2δ‖βPtu‖2 ≤ ‖P̃t∂su‖2 + C‖P̃tβA
δu‖2 + CN t

−N‖u‖2.

11The order of magnitude of the quantity
∫

log2〈ξ〉 |û(ξ)|2 dξ is invariant under changes of coordinates.
This is a consequence of diffeomorphism invariance of the classes Op(Sm

ρ,δ) for (ρ, δ) sufficiently close to
(1, 0); see Theorem 5.1, Chapter II of [31].
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Therefore choosing any large parameter T ,∫
log2〈ξ〉 |û(ξ)|2 dξ ∼

∫ ∞

e

log2(t)‖Ptu‖2 dt
t

+ ‖u‖2

≤
∫ ∞

e

ε(t)‖P̃t∂su‖2 dt
t

+

∫ ∞

e

ε(t)‖P̃tβA
δu‖2 dt

t
+ C‖u‖2

≤ ε(T )

∫ ∞

T

(
‖P̃t∂su‖2 + ‖P̃tβA

δu‖2
)

dt
t

+ CT‖u‖2

≤ Cε(T )
(
‖∂su‖2 + ‖βAδu‖2

)
+ CT‖u‖2

≤ Cε(T )
∑

j

‖Xju‖2 + CT‖u‖2.

Choosing T so that Cε(T ) ≤ δ yields the desired bound δ
∑

j ‖Xju‖2 + Cδ‖u‖2. �

Coupling the next lemma with Theorem 3.5 directly implies Corollary 3.6. The symbol
‖ · ‖ with no subscript will always denote the L2 norm.

Lemma 6.1. Suppose that a finite collection {Xj} of C∞ real vector fields satisfies the
bracket condition at every point of V \{x0}, and that X1(x0) 6= 0. Let U b V be relatively
compact. Then for every δ > 0, for all u ∈ H1 supported in U ,

(6.4) ‖u‖ ≤ δ
∑

‖Xju‖+ Cδ‖u‖H−1 .

Moreover, Cδ may be chosen to be a nondecreasing, continuous function of δ−1.

Proof. Choose coordinates in which x0 = 0, and let Br = {x : |x| < r}. Since X1(0) 6= 0,

‖u‖L2(Br) ≤ Cr‖X1u‖+ C‖u‖L2(B2r\Br) for all r > 0,

by the fundamental theorem of calculus. For any r and any ε > 0,

‖u‖L2(U\Br) ≤ ε
∑

‖Xju‖+ Cε,r‖u‖H−1 ,

by the bracket condition and hypoellipticity. Putting these ingredients together and choos-
ing r = δ gives

‖u‖ ≤ ‖u‖L2(Bδ) + ‖u‖L2(U\Bδ) ≤ Cδ‖X1u‖+ Cδε
∑

‖Xju‖+ Cε,δ‖u‖H−1 .

Choosing ε as a function of δ so that εCδ ≤ δ completes the proof. �

Lemma 6.2. Suppose that a finite collection {Xj} of C∞ real vector fields satisfies (6.4)
in some open set U ⊂ Rd. Then there exists w : Rd 7→ R+ such that w(ξ) → ∞ as
|ξ| → ∞, and such that for every u ∈ H1 supported in U ,

(6.5)

∫
Rd

w2(ξ)|û(ξ)|2 dξ ≤ C
∑

j

‖Xju‖2 + C‖u‖2.

Conversely, (6.5) easily implies (6.4), though this fact will not be needed here.
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Proof. Let {Pt, P̃t : t ∈ R+} be the collection of operators employed in the proof of
Lemma 3.1. Let t 7→ δ(t) be a nonincreasing function to be chosen below, tending to zero
as t→∞. Uniformly for all sufficiently large t,

‖Ptu‖ ≤ δ(t)
∑

j

‖XjPtu‖+ Cδ(t)‖Ptu‖H−1

≤ δ(t)
(∑

‖PtXju‖+ C‖P̃tu‖+ Ct−1‖u‖
)

+ Cδ(t)t
−1‖Ptu‖.

Here Cδ <∞ depends continuously on δ.
Choose δ(t) to be a nonincreasing continuous function of t tending to zero slowly enough

as t → ∞ that t−1 · Cδ(t) → 0 and δ(t) ≥ t−1/2. Then the final term in the preceding
inequality may be absorbed into the left hand side for large t, yielding

‖Ptu‖ ≤ δ(t)
∑

‖PtXju‖+ Cδ(t)‖P̃tu‖+ Ct−1‖u‖,

whence

‖δ(t)−1Ptu‖ ≤
∑

‖PtXju‖+ C‖P̃tu‖+ Ct−1δ(t)−1‖u‖,

and moreover the last term is ≤ Ct−1/2‖u‖. Squaring both sides and integrating yields∫ ∞

1

‖δ(t)−1Ptu‖2 dt
t
≤ C

∑
‖Xju‖2 + C‖u‖2.

Because δ−1 is a continuous function of t which tends to ∞ as t→∞, the left hand side is
≥

∫
Rd w

2(ξ)|û|2(ξ) dξ − C‖u‖2 for some continuous function w tending to ∞ as |ξ| → ∞,
by Plancherel’s theorem and the definition of {Pt}. �

Proof of Theorem 3.5. Suppose that {Xj} satisfies the bracket hypothesis at every point
of V \{x0}, and that Xj(x0) 6= 0 for some j. Let U b V be any sufficiently small relatively
compact neighborhood of x0. Fix a nonnegative function Ψ ∈ C∞(U) such that Ψ ≡ 0 in
some small neighborhood of x0, yet Ψ ≡ 1 except in a relatively compact subset of U . Let
η′ ∈ C∞(U) be any function supported in the region where Ψ ≡ 1, such that η′ ≥ c > 0
except on a compact subset of U . Define the function ψ(x, ξ) to be Ψ(x).

For any δ > 0 there exists Cδ such that for any u ∈ C∞
0 (U), for all i, the principal

hypothesis

‖Op[log〈ξ〉{ψ, σ(Xi)}]u‖ ≤ δ
∑

j

‖Xju‖2 + Cδ‖u‖2

of Theorem 2.4 holds because {Xj} satisfies a subelliptic estimate on a neighborhood of
the set of all x for which there exists ξ such that {ψ, σ(Xi)}(x, ξ) 6= 0, and because of the
pseudolocality of operators in the class Op(Sm

1−ε,ε). Theorem 2.4 therefore applies.
The proof of the second part of the theorem proceeds in the same manner but relies

instead on Theorem 2.3. The details are left to the reader, as is the proof of Theorem 3.7.
�
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The relevant literature is extensive. The following is a list of works cited in the text,
plus a few others that are particularly relevant to C∞ hypoellipticity. I apologize to those
authors whose works are relevant but are not listed.
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