
COMMENTARY ON TWO PAPERS OF A. P. CALDERÓN

MICHAEL CHRIST

Is she worth keeping? Why, she is a pearl Whose price hath
launched above a thousand ships. (William Shakespeare, Troilus
and Cressida)

Let u be a harmonic function in the upper half space Rn+1
+ = {(y, t) ∈ Rn × R :

t > 0}. Fundamental aspects of such functions are measured by

Nαu(x) = sup
(y,t)∈Γα(x)

|u(y, t)| (nontangential maximal function)(1)

Sαu(x) =
( ∫

Γα(x)

t1−n|∇u(y, t)|2 dy dt
)1/2 (Lusin area integral)(2)

‖u‖Hp = sup
t>0

‖u(·, t)‖Lp(Rn) (Hardy space norm)(3)

lim
Γα(x)3(y,t)→x

u(y, t). (nontangential limit)(4)

Here x ∈ Rn, and Γα(x) ⊂ Rn+1
+ is the open cone {(y, t) : |x−y| < αt}. If 1 < p <∞

then for any α, β > 0, ‖Sαu‖p, ‖Nβu‖p, and ‖u‖Hp are comparable uniformly for
all Schwartz functions. Moreover for any harmonic function in H1 +H∞, the limit
(4) exists for almost every x ∈ Rn.

Two 1950 papers of Calderón established local qualitative versions of some of
these relations.

Theorem 1. [2] Let E ⊂ Rn have positive Lebesgue measure. Suppose that for
each x ∈ E there exists β > 0 such that u is bounded in Γβ(x). Then for almost
every x ∈ E, the nontangential limit1 limΓα(x)3(y,t)→x u(y, t) exists for all α > 0.

Theorem 2. [3] Under the same hypotheses, for almost every x ∈ E, Sαu(x) is
finite for all α > 0.

For n + 1 = 2, these results had been established earlier by Plessner (1923)
and by Marcinkiewicz and Zygmund (1938), who exploited the connection with
holomorphic functions and mappings, including the conformal invariance of

∫
|f ′|2

for holomorphic f , and properties of conformal mappings of domains bounded by
rectifiable curves. Concerning his motivation, Calderón discloses only that he aims
to give a new proof that generalizes to functions of several variables, and that the
topic was proposed by Antoni Zygmund.

These two theorems, and elements of their proofs, have been prototypes for subse-
quent refinements and extensions at the hands of other authors. They have exerted
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in that setting thereafter, it was the subject of his student K. Merryfield’s dissertation.
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an enormous impact on the development of a broad swath of modern analysis. To
discuss this impact requires an outline of the proofs.2

The first step in the proofs of both theorems is to uniformize the situation. Let
ε > 0, and assume that E has finite measure. A simple real variable argument,
using the Hardy-Littlewood maximal function, shows that there exist a compact
subset E′ ⊂ E and h > 0, C < ∞ satisfying |E \ E′| < ε, such that for every
x ∈ E′, supΓh

α(x) |u| ≤ C. Here Γh
α(x) denotes the truncated cone {(y, t) ∈ Γα(x) :

0 < t < h}.
Introduce the open “sawtooth domain” R = Rα = ∪x∈E′Γh

α(x) ⊂ Rn+1
+ . Then

u is a bounded harmonic function in R; the local problem has been converted back
to a global problem on the sawtooth domain.

Such domains enjoy two principal properties. Firstly, they are Lipschitz domains;
the lower part of the boundary of R is the graph of a Lipschitz function from Rn to
R+, which vanishes identically on E′. Calderón’s papers [2],[3] are in fact pioneering
works on analysis in Lipschitz domains, a subject which has subsequently undergone
an immense development. Secondly, a technical point on which the analysis heavily
leans is that the harmonic function u|R is potentially poorly behaved only3 near
E′ ⊂ ∂R, a portion of the boundary which is contained in the hyperplane t = 0,
rather than in a general Lipschitz surface. More general stopping-time regions,
which are essentially unions with respect to x ∈ Rn of truncated cones Γα(x) ∩
{(y, t) : t > ρ(x)} for arbitrary nonnegative functions ρ, later played an important
part in Carleson’s proof of the Corona theorem and related developments in one
complex variable; see [11].

The two proofs now diverge. The second step in the proof of Theorem 1 is to
split4 u = ϕ + ψ in R, where the good part ϕ is harmonic in all of Rn+1

+ and
is essentially the Poisson integral of u∗ · χE′ . Here χS denotes the characteristic
function of a set S, and u∗ the boundary limit of u; more precisely, this product
is defined as the weak limit of u(y, t + n−1)χE′ as n → ∞. ψ is defined to be
u − ϕ. Since ϕ is a bounded harmonic function in the entire upper half space, it
has nontangential limits almost everywhere by the global theorem of Plessner. This
step exploits the fact that E′ lies in a hyperplane.

Step three is to prove that ψ has nontangential limit equal to zero at almost
every point of E′. For this it formally suffices, by the maximum principle, to find
a positive function v harmonic on R such that −v ≤ ψ ≤ v on ∂R, and such that
v has nontangential limit zero at each point of E′. Again this reasoning can be
made rigorous by replacing u with u(y, t+n−1), comparing the associated function
ψn to ±(v + εn) where εn → 0 sufficiently slowly as n → ∞, and letting n → ∞.
v is defined to be the Poisson integral of the characteristic function of Rn \ E′; v
is bounded below by a strictly positive constant on the part of ∂R where t > 0,
and has nontangential limit zero almost everywhere on ∂R ∩ {t = 0} = E′. This
concludes the proof of Theorem 1.

Theorem 1 has been extended in various ways. Carleson [6] obtained the same
conclusion under the weaker assumption that u is bounded below; more about this
momentarily. Hunt and Wheeden [13] extended Carleson’s theorem to functions

2Proof sketches here slur over essential details treated correctly in the original sources.
3An oversimplification.
4This splitting hints at the decomposition of a function into good and bad parts soon to be

exploited by Calderón and Zygmund in their work on singular integrals.



COMMENTARY ON TWO PAPERS OF A. P. CALDERÓN 3

harmonic in arbitrary Lipschitz domains, with a caveat: “almost everywhere” was
interpreted with respect to harmonic measure, rather than surface measure on the
boundary. Dahlberg [8] subsequently proved that harmonic measure and surface
measure are mutually absolutely continuous for all Lipschitz domains. In conjunc-
tion with the theorem of Hunt and Wheeden, this gave the natural (global) conclu-
sion that bounded, or more generally nonnegative, functions in a Lipschitz domain
have nontangential limits almost everywhere with respect to surface measure.

The proof of Theorem 2 begins with the same uniformization step. Then (mod-
ifying the integral defining Sαu by integrating only over t < h)

(5)
∫

E′
Sαu(x)2 dx =

∫
R
|∇u(y, t)|2m(y, t) dy dt

where m(y, t) = |{x ∈ E′ : (y, t) ∈ Γα(x)}| is ≤ Cαt. The next step is to majorize
m by an appropriate harmonic function v. Since5 2v|∇u|2 = v∆(u2) − u2∆(v),
Green’s theorem reexpresses

∫
R |∇u|

2v as a constant times

(6)
∫

∂R

(
vν · ∇u2 − u2ν · ∇v)

)
dσ

where ν is the normal vector to the boundary. If |v(y, t)| ≤ t then the first term of
the integrand is harmless, for the boundedness of u in Rβ for β > α implies bound-
edness of t|∇u(y, t)| in Rα, by the mean value theorem applied on B((y, t), ct).
The remainder of the argument was simplified by Stein, who chose v(y, t) = t.
Then u2∇v is likewise bounded. The boundary of R has finite surface measure, so
Sα(u) ∈ L2(E′).

In the simple case where u is globally bounded and E′ is a ball B of some radius r,
this calculation gives the Carleson measure estimate

∫
B×(0,r)

t|∇u|2 ≤ C|B|‖u‖2L∞ .
The use of Green’s theorem here foreshadows later developments concerning bound-
ary value problems and harmonic measure on Lipschitz domains. Identities based
on integration by parts played pivotal roles in Dahlberg’s proof [8] of the mutual
absolute continuity of harmonic and surface measures, and especially in a later al-
ternative proof due to Jerison and Kenig [14]; as well as in Verchota’s solution [22] of
boundary value problems for Laplace’s equation by the method of layer potentials,
in which an identity of Rellich was used to prove the equivalence of

∫
∂Ω
|∇nu|2 dσ

with
∫

∂Ω
|∇tu|2 dσ, where ∇n,∇t denote respectively the normal and tangential

parts of the gradient.
The converse of Theorem 2 was proved by Stein [19] via closely related reasoning.

Given that Sα(u) ∈ L2(E′), Green’s identity applied to
∫
R t|∇u|

2 leads to a bound
for (6) with v = t. (6) then amounts to one term which directly controls

∫
E′ u

2,
plus other relatively harmless terms.

Calderón’s original proof uses a different auxiliary function v, and invokes Green’s
theorem on the domain D = {v > 0, 0 < t < h}, rather than on R. He arranges for
D to contain (much of) R. The advantage is that the term vν · ∇u2 is identically
zero because v vanishes, except where t = h > 0, where all terms are harmless
because u is smooth on Rn+1

+ . More precisely, v(y, t) is defined to be Ct minus
the Poisson integral of d(x) = distance (x,E′), for a large constant C. There is no

5More generally, ∆(up) = p(p−1)up−2|∇u|2 for positive harmonic functions; in particular, up

is subharmonic when p > 1. This subharmonicity had already been exploited by Calder’on in his
unpublished proof of the Lp boundedness of the conjugate function; see [17] for a refinement of

that argument.
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satisfactory pointwise upper bound for this Poisson integral, but via an application
of the integral of Marcinkiewicz a useful bound was obtained on a set E′′ ⊂ E′ of
nearly full measure, leading to a bound for Sα(u) in L2(E′′) via Green’s theorem.

In extending (1) to nonnegative harmonic functions a decade later, Carleson
worked with harmonic measure and Green’s function for the same sawtooth do-
mains. For general Lipschitz domains, these remained poorly understood until
later work of Dahlberg [8], but for R Carleson observed [6], p. 395 that Calderón’s
conclusions about v could be interpreted as a pivotal bound for Green’s function,
namely ∂G/∂n ≥ cε > 0 on a subset of E having Lebesgue measure > |E| − ε.
Inequalities for Green’s function and harmonic measure, obtained in part via var-
ious comparisons relying on the maximum principle, were fundamental to later
developments concerning general Lipschitz domains.

In subsequent years, both complex and real methods were further developed,
with advances via complex techniques6 repeatedly stimulating further advances in
real techniques that yielded more general or precise results. Burkholder, Gundy,
and Silverstein obtained a striking new global result for harmonic functions in the
upper half-plane: For all 0 < p < ∞, rather than merely for p > 1, N(u) ∈ Lp if
and only if u + iũ ∈ Hp, where ũ denotes the conjugate function. Fefferman and
Stein [10] then obtained a more quantitative version of Theorem 2:

(7) λS(u)(r) ≤ CλN(u)(r) + Cr−2

∫ r

0

sλN(u)(s) ds

where λf (r) is the distribution function |{x : |f(x)| > r}|. One proves this, essen-
tially, by examining more closely

∫
{x:N(u)(x)≤r} S(u)(x)2 dx. Calderón and Torchin-

sky made important contributions to the nascent real-variable Hardy space theory,
for 0 < p ≤ 1, in two subsequent papers.

A refinement due to Burkholder and Gundy [1] is the relative distributional
inequality, also called a good λ inequality, of which one version [20] is

(8) |{x : S(u)(x) > λ and N(u) : (x) ≤ γλ}| ≤ Ckγ
k|{x : S(u)(x) > γλ}|

for λ > 0 and 0 < γ ≤ 1. This implies for instance the comparability of the Lp

norms of S(u) and N(u) for all p ∈ (0,∞). There is an analogous inequality with
the roles of S,N reversed. Chang, Wilson, and Wolff [7] found a sharp limiting
result as p → ∞: if u is the Poisson integral of f , and if S(u) ∈ L∞, then there
exists c <∞ such that ec|f |2 is integrable over any bounded set.

A proof of (8) meshes naturally with the theory of Muckhenhoupt’s Ap weights
to lead to the global inequality

(9)
∫

Rn

S(u)(x)pw(x) dx ≤ Cw

∫
Rn

N(u)(x)pw(x) dx

for all w ∈ Ap. Weighted norm inequalities for S were used by Calderón [5] in his
analysis of Cauchy integrals on Lipschitz curves.

An alternative natural approach to analysis on Lipschitz domains is to map to a
smoothly bounded domain via a change of variables. This converts the Laplacian to

6Calderón used complex methods in conjunction with Littlewood-Paley theory in his papers on

commutators of singular integral operators [4] and on the Cauchy integral on Lipschitz curves [5].
Real-variable methods regained a measure of ascendancy through subsequent works of Coifman-

Meyer, Coifman-Meyer-McIntosh, and David-Journé.
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an elliptic second-order operator with variable coefficients of possessing limited reg-
ularity. Thus it becomes natural to investigate analogues of all the issues discussed
above for such operators. See [16] for an introduction to this topic and references.

An underlying theme is the equivalence between a measure of size (N(u)) and
a measure of variation (S(u)). This theme is at work in the theory of analytic ca-
pacity of compact subsets of the complex plane, as developed by Calderón, David,
Melnikov, Tolsa, and many other authors; see the bibliography and Mathematical
Reviews discussion of [21] for this story. In the proof that a set of positive analytic
capacity must contain a rectifiable subset of positive length, a holomorphic function
whose size satisfies a certain upper bound is constructed. This size bound is then
reinterpreted, via an identity due to Melnikov, as an upper bound on Menger cur-
vature, which measures the deviation of the support of the measure from a subset
of a line, and is strongly analogous to an area integral. This theme, along with an
interplay between global and local versions, is also seen in Jones’ traveling salesman
theorem [15], where the global version of the theorem relates the length of a curve
to its deviation from linearity at all scales, and a local version then characterizes
subsets of rectifiable curves.
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[21] X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190

(2003), no. 1, 105–149.
[22] G. C. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equa-

tion in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611.

Department of Mathematics, University of California, Berkeley, CA 94720-3840,

USA
E-mail address: mchrist@math.berkeley.edu


