Math 202B— UCB, Spring 2014 — M. Christ Problem Set 8, due Wednesday March 19 (8.1) Folland problem 6.2. \square (8.2) Folland problem 6.7. \square (8.3) Folland problem 6.12. \square (8.4) Folland problem 6.19. (8.5) Folland problem 6.20. (8.6) Define the mappings $\pi_n : \mathbb{R}^3 \to \mathbb{R}^2$ by $$\pi_1(x) = (x_2, x_3), \qquad \pi_2(x) = (x_1, x_3), \qquad \pi_3(x) = (x_1, x_2)$$ where $x = (x_1, x_2, x_3)$. Prove that $$\int_{\mathbb{R}^3} \prod_{n=1}^3 f_n(\pi_n(x)) \, dm(x) \le \prod_{n=1}^3 \|f_n\|_{L^2}$$ for all nonnegative measurable functions $f_n: \mathbb{R}^2 \to [0, \infty]$. (This is the *Loomis-Whitney inequality* for \mathbb{R}^3 ; there is an extension to higher dimensions.) (8.7) For L^2 there is the useful parallelogram identity. In this problem, we establish a substitute for L^p , for $2 . All functions are assumed (for the sake of simplicity) to be real-valued in this problem. Let <math>(X, \mathcal{A}, \mu)$ be a measure space; L^p refers to $L^p(X, \mathcal{A}, \mu)$. Let $p \in [2, \infty)$. One of Clarkson's inequalities states: For any $f, g \in L^p$, $$||f + g||_p^p + ||f - g||_p^p \le 2^{p-1} ||f||_p^p + 2^{p-1} ||g||_p^p.$$ (8.7)(a) Prove this inequality. (8.7)(b) Show that as a consequence, if $||f||_p = ||g||_p = 1$, then $||f + g||_p \le 2(1 - 2^{-p}||f - g||_p^p)^{1/p}$. (8.7)(c) Show that if $f, g \in L^p$ satisfy $||f+g||_p = ||f||_p + ||g||_p$ and $||f||_p = ||g||_p$ then one function is a nonnegative constant multiple of the other, almost everywhere. (This is true without the assumption of equal norms; but that requires a different argument.) (8.7)(d) Let 2 . Let <math>V be a closed subspace of L^p . Let $f \in L^p$. Define dist $(f, V) = \inf_{h \in V} \|f - h\|_p$. Show that there exists $g \in V$ such that $\|f - g\|_p = \operatorname{dist}(f, V)$. Show that g is unique. ## Hints | (8.6) Apply Cauchy-Schwarz with respect to the x_1 variable, keeping the other two coordinates fix Then apply Cauchy-Schwarz again. | xed. | |---|-----------| | (8.7)(a) Show that it suffices to prove that $(1+t)^p + (1-t)^p \le 2^{p-1} + 2^{p-1}t^p$ for all $t \in [0,1]$. To prove this. | `hen
□ | | (8.7)(d) Mimic the proof that we gave for the corresponding result concerning Hilbert spaces. | |