Math 202B— UCB, Spring 2014 — M. Christ Problem Set 6, due Wednesday March 3

(6.1) Folland 5.48.	
(6.2) Folland 5.49.	
(6.3) (Folland 5.51) Let X be a normed vector space and $V \subset X$ a subspace. Show that V norm-closed if and only if V is weakly closed.	∕ is
(6.4) Folland 5.52.	
(6.5) (Folland 5.56) Let V be a subspace of a Hilbert space \mathcal{H} . Then $(V^{\perp})^{\perp}$ equals the small closed subspace of \mathcal{H} that contains V.	llest
(6.6) Folland problem 5.57.	
(6.7) Folland problem 5.58.	
(6.8) (Folland 5.59) Let K be a nonempty closed convex subset of a Hilbert space \mathcal{H} . Then contains a unique element with smallest norm.	K

Hints

(6.8) If \mathcal{M} is a closed subspace of \mathcal{H} and $x \in \mathcal{H}$, then $K = \mathcal{M} - x$ is a closed convex set. Therefore a corollary of this problem is the fact that \mathcal{M} contains a unique element closest to x. Therefore you should probably either use this corollary, or employ a method that is sufficiently powerful to prove the corollary.