
Math 202B— UCB, Spring 2014 — M. Christ
Problem Set 2, due Wednesday February 5

(2.1) Complete the proof of Theorem 2.41 of our text: Let n ≥ 1. Let m be Lebesgue measure in
Rn. Let f ∈ L1(Rn,Ln,m) and let ε > 0.

(i) There exists a simple function g =
∑N

j=1 cj1Rj , where Rj are genuine rectangles, such that

‖f − g‖L1 < ε.
(ii) There exists a continuous function ϕ that vanishes outside some bounded set and satisfies ‖f −
φ‖L1 < ε.

(2.2) Which conclusions of Theorem 2.44 of our text remain valid if T : Rn → Rn is linear but not
invertible? Justify your answer.

(2.3) The Gamma function is defined to be Γ(z) =
∫∞
0 e−ttz−1 dt, for z ∈ C with Re (z) > 0. Use

Fubini’s Theorem to prove that Γ(x)Γ(y) = Γ(x + y)
∫ 1
0 t

x−1(1 − t)y−1 dt whenever x, y, x + y all
have real parts > −1. (Here all exponentials with complex exponents are defined using the principal

branch of the logarithm function; tw = ew ln(t) for t ∈ R+.)

(2.4) The measure σ on the unit sphere Sn−1 ⊂ Rn is defined in §2.7 of our text. Show that σ is
invariant under rotations. That is, if T : Rn → Rn is an orthogonal linear transformation, then for
all Borel sets E ⊂ Sn−1, T (E) ⊂ Sn−1 is a Borel set, and σ(T (E)) = σ(E).

(A complication: There are two natural ways to define the Borel subsets of Sn−1: (a) All sets which
are Borel subsets of Rn and are contained in Sn−1. (b) Sn−1 is a topological space, under the relative
topology that it inherits from its inclusion as a subset of Rn. Form the smallest σ–algebra of subsets
of Sn−1 that contains all sets that are open with respect to this topology. These two candidates are
in fact equal (an easy exercise). You need not prove this.)

(2.5) Let a, b ∈ R and consider f(x) = |x|a · | ln(|x|)|b for 0 6= x ∈ Rn. For which values of a, b is
f ∈ L1(

{
x : |x| ≤ 1

2

}
)? What about L1({x : |x| ≥ 2})? (You may want to use polar coordinates in

Rn. You may use the material in §2.7 of our text for this purpose.)

(2.6) Let f : Rn → C, and define F : R2n → C by F (x, y) = f(x− y).
(a) Show that if f is Borel measurable, then so is F .
(b) Show that if f is Lebesgue measurable, then so is F .

(2.7) [Folland (2.63)] Let n ≥ 2. Let f(x) =
∏n
j=1 x

αj

j where each exponent αj belongs to {0, 1, 2, . . .}.
Show that if all αj are even then ∫

Sn−1

f dσ = 2
Γ(β1) · · ·Γ(βn)

Γ(β1 + · · ·+ βn)

where βj = 1
2(αj + 1). Show that if any αj is odd then the integral vanishes. (Our text provides a

useful hint.)

The final two problems are remarks that were made in class on Wednesday 1/29.

(2.8) Show that there exists a compact set E ⊂ R such that m(E) > 0, but E contains no interval
of positive length. (Hint below.)

(2.9) Let E = Q ∩ [0, 1]. Show that m(E) = 0. Show that if {Ij} is a finite collection of intervals
such that E ⊂ ∪jIj , then

∑
jm(Ij) ≥ 1.
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Hints

(2.8) Recursively construct a sequence of compact sets [0, 1] = E0 ⊃ E1 ⊃ E2 ⊃ . . . as follows.
Choose a sequence of positive numbers rj ∈ (0, 1). To construct E1 from E0, delete from E0 an open
interval of length r1 centered at 1

2 . E1 is a union of two closed intervals I1,j for j = 1, 2, each of

which has length ρ = 1
2(1 − r1). From each of I1,j delete an open interval of length r2ρ1 centered

at the center of I1,j . This leaves 22 pairwise disjoint closed intervals I2,j , 1 ≤ j ≤ 4, each of length
ρ2 = 1

2(ρ1−r2ρ1) = 1
2ρ1(1−r2) = 1

4(1−r1)(1−r2). Their union is E2. From each of these 22 intervals

delete a centered open interval of length r3ρ2, to obtain E3, a union of 23 disjoint closed intervals.
And so forth. Define E = ∩∞k=0Ek. Show that the parameters rk can be chosen so that E has the
required properties. �
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