Math 202B— UCB, Spring 2014 — M. Christ Problem Set 2, due Wednesday February 5

- (2.1) Complete the proof of Theorem 2.41 of our text: Let $n \ge 1$. Let m be Lebesgue measure in \mathbb{R}^n . Let $f \in L^1(\mathbb{R}^n, \mathcal{L}^n, m)$ and let $\varepsilon > 0$.
- (i) There exists a simple function $g = \sum_{j=1}^{N} c_j \mathbf{1}_{R_j}$, where R_j are genuine rectangles, such that $||f g||_{L^1} < \varepsilon$.
- (ii) There exists a continuous function φ that vanishes outside some bounded set and satisfies $||f \varphi||_{L^1} < \varepsilon$.
- (2.2) Which conclusions of Theorem 2.44 of our text remain valid if $T: \mathbb{R}^n \to \mathbb{R}^n$ is linear but not invertible? Justify your answer.
- (2.3) The Gamma function is defined to be $\Gamma(z) = \int_0^\infty e^{-t}t^{z-1}\,dt$, for $z \in \mathbb{C}$ with $\operatorname{Re}(z) > 0$. Use Fubini's Theorem to prove that $\Gamma(x)\Gamma(y) = \Gamma(x+y)\int_0^1 t^{x-1}(1-t)^{y-1}\,dt$ whenever x,y,x+y all have real parts > -1. (Here all exponentials with complex exponents are defined using the principal branch of the logarithm function; $t^w = e^{w \ln(t)}$ for $t \in \mathbb{R}^+$.)
- (2.4) The measure σ on the unit sphere $S^{n-1} \subset \mathbb{R}^n$ is defined in §2.7 of our text. Show that σ is invariant under rotations. That is, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal linear transformation, then for all Borel sets $E \subset S^{n-1}$, $T(E) \subset S^{n-1}$ is a Borel set, and $\sigma(T(E)) = \sigma(E)$.

(A complication: There are two natural ways to define the Borel subsets of S^{n-1} : (a) All sets which are Borel subsets of \mathbb{R}^n and are contained in S^{n-1} . (b) S^{n-1} is a topological space, under the relative topology that it inherits from its inclusion as a subset of \mathbb{R}^n . Form the smallest σ -algebra of subsets of S^{n-1} that contains all sets that are open with respect to this topology. These two candidates are in fact equal (an easy exercise). You need not prove this.)

- (2.5) Let $a, b \in \mathbb{R}$ and consider $f(x) = |x|^a \cdot |\ln(|x|)|^b$ for $0 \neq x \in \mathbb{R}^n$. For which values of a, b is $f \in L^1(\{x : |x| \leq \frac{1}{2}\})$? What about $L^1(\{x : |x| \geq 2\})$? (You may want to use polar coordinates in \mathbb{R}^n . You may use the material in §2.7 of our text for this purpose.)
- (2.6) Let $f: \mathbb{R}^n \to \mathbb{C}$, and define $F: \mathbb{R}^{2n} \to \mathbb{C}$ by F(x,y) = f(x-y).
- (a) Show that if f is Borel measurable, then so is F.
- (b) Show that if f is Lebesgue measurable, then so is F.
- (2.7) [Folland (2.63)] Let $n \ge 2$. Let $f(x) = \prod_{j=1}^n x_j^{\alpha_j}$ where each exponent α_j belongs to $\{0, 1, 2, \ldots\}$. Show that if all α_j are even then

$$\int_{S^{n-1}} f \, d\sigma = 2 \frac{\Gamma(\beta_1) \cdots \Gamma(\beta_n)}{\Gamma(\beta_1 + \cdots + \beta_n)}$$

where $\beta_j = \frac{1}{2}(\alpha_j + 1)$. Show that if any α_j is odd then the integral vanishes. (Our text provides a useful hint.)

The final two problems are remarks that were made in class on Wednesday 1/29.

- (2.8) Show that there exists a compact set $E \subset \mathbb{R}$ such that m(E) > 0, but E contains no interval of positive length. (Hint below.)
- (2.9) Let $E = \mathbb{Q} \cap [0,1]$. Show that m(E) = 0. Show that if $\{I_j\}$ is a *finite* collection of intervals such that $E \subset \bigcup_j I_j$, then $\sum_j m(I_j) \geq 1$.

Hints

(2.8) Recursively construct a sequence of compact sets $[0,1] = E_0 \supset E_1 \supset E_2 \supset \ldots$ as follows. Choose a sequence of positive numbers $r_j \in (0,1)$. To construct E_1 from E_0 , delete from E_0 an open interval of length r_1 centered at $\frac{1}{2}$. E_1 is a union of two closed intervals $I_{1,j}$ for j=1,2, each of which has length $\rho = \frac{1}{2}(1-r_1)$. From each of $I_{1,j}$ delete an open interval of length $r_2\rho_1$ centered at the center of $I_{1,j}$. This leaves 2^2 pairwise disjoint closed intervals $I_{2,j}$, $1 \leq j \leq 4$, each of length $\rho_2 = \frac{1}{2}(\rho_1 - r_2\rho_1) = \frac{1}{2}\rho_1(1-r_2) = \frac{1}{4}(1-r_1)(1-r_2)$. Their union is E_2 . From each of these 2^2 intervals delete a centered open interval of length $r_3\rho_2$, to obtain E_3 , a union of 2^3 disjoint closed intervals. And so forth. Define $E = \bigcap_{k=0}^{\infty} E_k$. Show that the parameters r_k can be chosen so that E has the required properties.