
Math 202B — UCB, Spring 2014 — M. Christ
On convergence of Fourier series

1 Clarification

I want to reemphasize that the Fourier inversion formula

f = (f̂)∨

holds for all f ∈ L2(Rd), in the following sense: Let T be the unique bounded linear operator
L2(Rd)→ R2(Rd) that satisfies T (f) = f̂ for all f ∈ L1∩L2, where f̂(ξ) =

∫
f(x)e−2πix·ξ dx.

(Here f, T (f) are equivalence classes of functions.) Likewise let S be bounded and linear
and satisfy S(f) = f∨ for f ∈ L1 ∩ L2. Then S ◦ T : L2 → L2 is well-defined, and
S(T (f)) = f (as equivalence classes of functions) for all f ∈ L2.
Proof. S is contained in L1 ∩ L2, and is dense in L2. If f ∈ S then f̂ ∈ S. In
particular, both f, f̂ belong to L1. In particular, (f̂)∨ is well-defined by the formula
(f̂)∨(x) =

∫
f̂(ξ)e2πix·ξ dξ. We have proved that whenever f, f̂ ∈ L1, f = (f̂)∨. (The

integral defines a continuous function, which agrees almost everywhere with any represen-
tative of the equivalence class of f .)

Therefore (S ◦ T )(f) = f for all f ∈ S. Since S is dense in L2, and since S ◦ T is
continuous, this identity holds for all f ∈ L2.

2 Motivation

Around 1820, Joseph Fourier studied the propagation of heat. Consider a wire made of
metal or another material that conducts heat. Suppose that different points at the wire
are initially at different temperatures, that all sources of heating or cooling are removed so
that heat neither enters nor leaves the wire. Then as time moves forward, heat will flow
from hotter regions to cooler ones, until an equilibrium is reached.

The mathematical description: Parametrize the wire by x ∈ R. Let t be time. Let
u(t, x) be the temperature at points x at time T . This system is modeled by the partial
differential equation

∂tu = ∂2
xu,

called the heat equation. (Integrating this with respect to x ∈ [a, b], it says that heat energy
flows from warmer regions to cooler regions at a rate proportional to the difference in their
temperatures.)

The problem Fourier sought to solve was: If u is know at time t = 0, how can u be
calculated for future times? Mathematically, the problem is to solve the above partial
differential equation for t > 0, with the initial condition u(0, x) = f(x), a known function
of x.

Let us consider a circular piece of wire, so that the complication of endpoints is elimi-
nated (Fourier did deal with the endpoints). Then we can regard f, u as periodic functions
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of x ∈ R1. Assuming the period to be 1, we can equivalently regard them as functions from
T to R. Recall the functions en(x) = e2πinx, for n ∈ Z.

Fourier knew that ∂2(en) ≡ (−2πin)2en; these are eigenfunctions for ∂2
x. That is no

surprise if one recognizes that

∂xf = lim
y→0

τ−yf − f
y

and recalls that these are eigenfunctions for τy for all y. Thus it is reasonable to look for
solutions of the heat equation of the form an(t)en(x), and one immediately finds that

e−4π2n2te2πinx

is a solution for every n ∈ N, which equals en(x) when t = 0.
Fourier also knew that the heat equation is linear; adding two solutions, or multiplying

a solution by a scalar, gives a new solution. So any finite linear combination∑
n

ane
−4π2n2te2πinx,

where the coefficients an are constants, is a solution. (In order to have a real solution, one
needs a−n = an for all n. But let’s ignore the fact that temperatures ought to be real.)

Now Fourier took several bold steps. (i) He considered infinite series

∞∑
n=−∞

ane
−4π2n2te2πinx

and claimed that these are also solutions;
(ii) he claimed that any function f : T → C could be represented as the sum of a series∑∞

n=−∞ ane
2πinx for some sequence of coefficients an, and

(iii) he put these two claims together to assert a method for solving the heat equation with
initial datum u(0, x) = f(x), for any f .

This raised all sorts of questions, which were beyond the scope of Mathematics at that
time. Can any f be so represented? Can a sum of continuous functions anen equal a
discontinuous function f? Does the sum of the infinite series actually satisfy the heat
equation? In what sense is limt→0+ u(t, x) equal to f(x)? In what sense, and for which
f , is f(x) =

∑∞
n=−∞ anen(x)? A big chunk of modern analysis originated in the effort to

resolve these and related issues.

3 Divergence of Fourier series

We know some facts relevant to these questions. Define

SN (f)(x) =
N∑

n=−N
f̂(n)e2πinx.
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• Given f ∈ L2, if we define an = f̂(n) then the series
∑

n anen converges to f , in the
sense that

‖f − SN (f)‖L2(T) → 0 as N →∞.

• If f ∈ C0(T) and f̂ ∈ `1 then SN (f)→ f uniformly on T.

The second fact is proved by defining g =
∑

n f̂(n)en. The series converges uniformly,
so g ∈ C0. One can justify the formal calculation

ĝ(m) =
∫
e−2πimx

∑
n

f̂(n)e2πinx dx =
∑
n

f̂(n)
∫
e2πi(n−m)x dx = f̂(m)

using Fubini. Thus ĝ = f̂ , so ĝ − f ≡ 0. Since g − f ∈ L2, it follows that g ≡ f .
But these facts fall far short of answering natural questions. In particular, if f : T→ C

is a general continuous function but no assumption is made on the nature of its Fourier
coefficients, then does SN (f) converge to f pointwise? We will now investigate this question.

A key point is that there is a relatively simple expression for SN (f), much simpler for
large N than the sum of 2N + 1 terms of a series. Firstly,

SN (f)(x) =
∑
|n|≤N

f̂(n)e2πinx

=
∑
|n|≤N

∫
T
f(y)e−2πiny dye2πinx

=
∫

T
f(y)

∑
|n|≤N

e2πin(x−y) dy

=
∫

T
DN (x− y)f(y) dy

= f ∗DN (x)

where
DN (y) =

∑
|n|≤N

e2πiny.

Thus
SN (f) = f ∗DN ;

partial sums of the Fourier series are obtained by convolution with the functions DN , which
are called the Dirichlet kernel(s).
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Secondly, the finite series defining DN can be calculated:

N∑
n=−N

e2πiny = e−2πiNy
2∑

k=0

Ne2πiky

= e−2πiNy e
2πi(2N+1)y − 1
e2πiy − 1

=
eπi(2N+1)y − e−πi(2N+1)y

eπiy − e−πiy

=
sin(π(2N + 1)y)

sin(πy)

for y 6= 0; obviously DN (0) = 2N + 1 since every term in the series equals 1 when y = 0.
So

DN (y) =
sin(π(2N + 1)y)

sin(πy)
,

with the natural interpretation at y = 0. This ratio is a 1–periodic continuous function of
y ∈ R, or equivalently, a continuous function of y ∈ T. Because sin(πy) = 0 for y ∈ [−1

2 ,
1
2 ]

only for y = 0, by comparing Taylor expansions at y = 0 one finds that DN is an infinitely
differentiable function on T.

Individually, the functions DN are tamely behaved, but not uniformly so.
Lemma. There exists c > 0 such that ‖DN‖L1(T) ≥ c log(N) as N →∞.

What we need to know below is simply that ‖DN‖L1 →∞. This is implicit in the last
problem of problem set 12, and is exercise 8.34 in our text. I will assume this result for
now, leaving the verification to a problem set. This is a fundamental fact about Fourier
series.

This fact has a startling consequence.
Proposition. There exists a function f ∈ C0(T) such that the sequence of partial sums
SN (f)(0) is unbounded, and in particular, fails to converge to f(0).

Since SN is a convolution operator, SN (τyf) = τy(SN (f)) for any y. Therefore the
sequence (SN (τyf)(y) : N ∈ N) is unbounded; there is nothing special about the point 0 in
this result.
Proof. For each N , the mapping `N (f) = SN (f)(0) =

∫
T f(y)DN (−y) dy is a bounded

linear functional from C0(T) to C; indeed, `N (f) =
∫
f dµN where dµN = DN dx is a

complex Radon measure on C0(T). We know from the easy part of the Riesz Representation
Theorem that ‖`N‖(C0)∗ = ‖µN‖M(T); and this equals ‖DN‖L1 .

If the sequence SN (f)(0) = `N (f) were bounded for each f ∈ C0, then by the Uniform
Boundedness Principle, the functionals `N would be uniformly bounded, that is, there
would exist C <∞ such that ‖`N‖(C0)∗ ≤ C for every N . But we have observed that this
is not the case.

I had promised you a genuine application of the Uniform Boundedness Principle before
the end of the semester; here it is.
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You may have wondered whether the Fourier series of an L2 function must converge to
the function pointwise. We have now seen that even for a continuous function, this need
not be the case.

Important philosophical point: It’s not just that the UBP provides a slick way for
showing existence of a function for which the series diverges, without our needing (or being
able?) to actually construct such a function. The UBP focuses our attention on the essential
point: we should examine ‖DN‖L1 , rather than casting about trying to figure out how to
guess or construct some counterexample.

The failure of convergence for continuous funtions is a matter of degree, in the sense
that there is no problem for functions that are sufficiently continuous.
Proposition. If f ∈ C0(T) is Lipschitz continuous, then SN (f)(x) converges to f(x) for
every x ∈ T as N →∞.
Proof. Observe that

∫
TDN = D̂N (0) = 1 by the very definition of DN . Therefore

f(x)− SN (f)(x) =
∫

(f(x)− f(x− y))DN (y) dy =
∫
f(x)− f(x− y)

sin(πy)
sin((2N + 1)πy) dy.

The function g(y) = f(x)−f(x−y)
sin(πy) is bounded, hence is in L1. By the (proof of the) Riemann-

Lebesgue Lemma, ∫
g(y) sin((2N + 1)πy) dy → 0

as N →∞.
By repeating the proof of the Riemann-Lebesgue lemma, one can actually conclude that

SN (f)→ f uniformly on T.

4 Using the Fourier transform to solve the heat equation

In this section we follow Fourier to solve the d–dimensional heat equation

ut = ∆xu.

We will first solve this problem for Rd, then discuss Td (which turns out to require an extra
wrinkle). Here ∆x = ∆ is the Laplace operator

∆u =
d∑
i=1

∂2

∂x2
i

.

We want u(0, x) = f(x), where f is a given function.

4.1 The case of Rd

According to the heuristics explained above, it is natural to define

u(t, x) =
∫
e−4π2|ξ|2te2πix·ξ f̂(ξ) dξ.
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Proceeding formally without bothering for now about convergence issues, we can write this
in the alternative form

u(t, x) =
∫
e−4π2|ξ|2te2πix·ξ

∫
f(y)e−2πiξ·y dy dξ

=
∫
f(y)

(∫
e−4π2|ξ|2te2πi(x−y)·ξ dξ

)
dy

= f ∗ ht(x)

where
ht(y) =

∫
e−4π2|ξ|2te2πiy·ξ dξ.

Recalling that ∫
e−2πiy·ξe−πs|ξ|

2
dξ = s−d/2e−π|y|

2/s,

by setting s = 4πt we find that

ht(y) = (4πt)−d/2e−π|y|
2/4πt = 2−dπ−d/2t−d/2e−|y|

2/4t.

Lemma. The function w(t, y) = ht(y), defined for (t, y) ∈ (0,∞)×Rd, is a solution of the
heat equation wt = ∆yw.

This can be proved either by direct calculation using the expression t−d/2e−|y|
2/4t, or

using the integral representation
∫
e−4π2|ξ|2te2πiy·ξ dξ. The latter has the advantage that if

one passes ∂t−∆y inside the integral then one sees immediately that the resulting integrand
vanishes; but one needs to justify passing the differential operator inside the integral.

Observe that for any t > 0, ht is a Schwartz function. Therefore f∗ht(x) is a well-defined
C∞ of x for all t > 0.
Lemma. If f ∈ L1(Rd) or f ∈ L∞(Rd) then u(t, x) = f ∗ ht is a C∞ function of (t, x) ∈
(0,∞)× Rd, which satisfies the heat equation ut = ∆xu.
Proof. Consider the expression v(t, x) =

∫
f(y)e−|x−y|

2/4t dy. This is well-defined for
f ∈ L1 or L∞ since the exponential factor belongs to L∞ ∩ L1 as a function of y, for each
t > 0.

The integrand is a C∞ function of (x, t). To verify that ∂tv(t, x) exists, is continuous,
and equals

∫
f(y)(1

4 |x− y|
2t−2)e−|x−y|

2/4t dy, consider

v(t+ h, x)− v(t, x)
h

=
∫
f(y)h−1

(
e−|x−y|

2/4(t+h) − e−|x−y|2/4t
)
dy.

As h→ 0, the integrand converges to f(y)(1
4 |x− y|

2t−2)e−|x−y|
2/4t. Provided that |h| ≤ 1

2 t,
the Mean Value Theorem guarantees that the absolute value of the integrand does not
exceed |f(y)| · (1

4 |x− y|
24t−2)e−|x−y|

2/2t, which is an L1 function of y. Therefore the limit
exists and equals 1

4 t
−2
∫
f(y)|x− y|2e−|x−y|2/4t dy. This integral represents 1

4 t
−2 times the

convolution of f with the Schwartz function |y|2e−|y|2/4t, so is a continuous function of x.
This reasoning can be repeated to analyze partial derivatives of u of arbitrary order

with respect to (t, x).
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Lemma. If f is bounded and continuous then u(t, x)→ f(x) as t→ 0+, for all x ∈ Rd. If
f ∈ L1 then u(t, ·) → f in L1 norm. More generally, for any exponent p ∈ [1,∞) and any
f ∈ Lp(Rd), u(t, ·)→ f in Lp(Rd) norm as t→ 0+.
Proof. u(t, x) = (f ∗ϕs)(x) where s = t1/2 and ϕ(y) = (4π)−d/2e−|y|

2/4. This is a Schwartz
function, and we have already verified earlier in the course that it satisfies

∫
ϕ = 1. So we

have a general theorem asserting that u(t, ·)→ f in Lp whenever f ∈ Lp and 1 ≤ p <∞.
If f ∈ C0 then we already have a theorem asserting that f ∗ ϕs → f uniformly as

s → 0+. If it is merely assumed that f is continuous and bounded, then that result can’t
be applied, and its proof, which relied on the uniform continuity of f , is not valid. But the
proof does work with a bit more care.

Let z ∈ Rd; we want to prove u(t, z) → f(z). By replacing f by τzf we may assume
z = 0. Then continuing to write s = t1/2,

u(t, 0) =
∫
f(−y)ϕs(y) dy.

Let ε > 0 and choose δ > 0 so that |f(y)− f(0)| < ε whenever |y| < δ. Then

|u(t, 0)− f(0)| =
∣∣ ∫ (f(−y)− f(0)

)
ϕs(y) dy

∣∣
≤
∫ ∣∣f(−y)− f(0)

∣∣ϕs(y) dy

≤
∫
|y|≤δ

∣∣f(−y)− f(0)
∣∣ϕs(y) dy +

∫
|y|>δ

∣∣f(−y)− f(0)
∣∣ϕs(y) dy

≤ ε
∫
|y|≤δ

ϕs(y) dy + 2 sup
y∈Rd

|f(y)|
∫
|y|>δ

|ϕs(y) dy

≤ ε+ 2 sup
y∈Rd

|f(y)|
∫
|y|>δ

ϕs(y) dy.

Now ∫
|y|>δ

ϕs(y) dy =
∫
|y|>s−1δ

ϕ(y) dy → 0 as s→ 0+.

Therefore
lim sup
t→0+

|u(t, 0)− f(0)| ≤ ε

for all ε > 0.
Notice that we never bothered to justify the steps of our initial derivation of the formula

for u. The Fourier transform entered this discussion only as a way to guess a formula for
u; we then verified directly that that formula worked.

4.2 The Poisson Summation Formula

Theorem. Let g ∈ S(Rd). Then ∑
n∈Zd

ĝ(n) =
∑
n∈Zd

g(n).
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This has a beautiful alternative formulation. Let λ be the infinite measure λ =∑
n∈Zd δn, a sum of Dirac masses, one at each element of Zd. It is possible to define

the Fourier transform of any measure satisfying very mild conditions, although we won’t
do so yet. Once we do have a suitable definition, then the Theorem can be restated:

λ̂ = λ.

Before discussing the derivation, here is a motivating application. To solve the heat
equation on (0,∞)× Td with u(0, x) = f(x), we have been led to the formula

u(t, x) =
∑
n∈Zd

f̂(n)e−4π2|n|2te2πin·x.

As in the Rn case, we can at least formally rewrite this as f ∗ ht(x) where now

ht(y) =
∑
n∈Zd

e−4π2|n|2te2πin·x.

The next step is to evaluate this sum in closed form. Our derivation for R used contour
integration; but here we have an infinite series, not an integral! Contour integration doesn’t
look relevant here.

What to do? Use the Poisson Summation Formula, with g(x) = e−4π2t|x|2 to find that

ht(y) = 2−dπ−d/2t−d/2
∑
n∈Zd

e−|n|
2/4t.

This is not as simple as in the case of Rd, but it still contains quite a lot of useful information,
and in particular can be used to derive analogues for Td of all the facts shown above for
solutions of the heat equation for Rd.

In our text you’ll find the PSF stated for a larger class of functions g. You should
understand that, like many formulas and principles that we have learned, the PSF is best
regarded as a meta-identity or meta-theorem, which applies under various assumptions, or
combinations of assumptions, on g and ĝ. The class S is large enough to be dense in many
function spaces, but small enough to ensure that the infinite sums on both sides of the
equation are well-defined.

The proof of the PSF revolves around the relationship between two different Fourier
transforms; one for Rd, one for Td. (In that respect it is like the Shannon Sampling
Theorem.) Therefore we need suitable notation to distinguish these two transforms. For
h : Td → C, temporarily define F(h)(k) =

∫
Td h(x)e−2πik·x dx, reserving the notation f̂ for

the Rd–Fourier transform of f : Rd → C.
To prove the PSF, let g ∈ S and consider the function

G(x) =
∑
m∈Zd

g(x+m).
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G is a periodic function, so can, and will, be regarded as a function of x ∈ Td. By the
Fourier inversion formula for Td,∑

n∈Zd

g(n) = G(0)

=
∑
n∈Zd

F(G)(n)

=
∑
n∈Zd

∫
[0,1]d

G(x)e−2πin·x dx

=
∑
n∈Zd

∫
[0,1]d

∑
m∈Zd

g(x+m)e−2πin·x dx

=
∑
n∈Zd

∫
[0,1]d

∑
m∈Zd

g(x+m)e−2πin·(x+m) dx

=
∑
n∈Zd

∫
Rd

g(x)e−2πin·(x+m) dx

=
∑
n∈Zd

ĝ(n) !

4.3 The heat equation for Td

Everything we’ve proved for Rd now goes through for Td. The proofs are slightly more
complicated because for Td, the function denoted above by ht(x) is no longer of the usual
form s−dh(s−1x); indeed, dilation doesn’t make sense for Td, so we can’t expect that! But
ht > 0,

∫
Td ht dx = ĥt(0) = 1, ht(y) is a C∞ function on (0,∞)×Td, and

∫
|y|≥δ ht(y) dy → 0

as t→ 0+, if we identify Td with [−1
2 ,

1
2 ]d. These properties are sufficient to allow the proofs

given above to be pushed through.

5 More on pointwise convergence

Consider a formal infinite series
∑∞

n=1 an of complex numbers and its partial sums sN =∑
n = 1Nan. If the series converges, that is, if sn → S as n → ∞, then the averages

σN = N−1
∑N

n=1 sn of the successive partial sums also converge to S. But if the series is
divergent, then the sequence σN may still converge. For instance, if an = (−1)n−1 then the
sequence sn is (1, 0, 1, 0, 1, 0, . . . ); no limit. Yet the sequence σN clearly converges, to 1

2 .
Consider now the Fourier series of some function f ∈ L1(T). Form

SN (x) = SN ∗ (f)(x) =
N∑

n=−N
f̂(n)e2πinxσN (x)

= σN (f)(x) = (N + 1)−1
N∑
k=0

Sk(x).
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One calculates that

σN (f)(x) =
N∑

n=−N

(
1− (N + 1)−1|n|)

)
f̂(n)e2πinx.

This resembles

SN (f)(x) =
N∑

n=−N
f̂(n)e2πinx,

with weights (
1− (N + 1)−1|n|) ∈ [0, 1]

inserted into the sum.
As in our discussion of SN , DN , σN (f) can be rewritten as a convolution

σN (f)(x) = KN ∗ f(x)

where

KN (y) =
N∑

n=−N

(
1− (N + 1)−1|n|)

)
e2πiny

= (N + 1)−1
N∑
k=0

Sk(y)

= (N + 1)−1 sin(πy)−1
N∑
k=0

sin(π(2k + 1)y)

= (N + 1)−1 sin(πy)−1(2i)−1
N∑
k=0

(
eiπ(2k+1)y − e−iπ(2k+1)y

)
and we’re off to the races with two partial sums of geometric series. After invoking the
formula twice and cleaning up, one ends up with

KN (y) = (N + 1)−1 sin2(π(N + 1)y)
sin2(πy)

.

Most basic properties of KN :

• By definition of KN ,∫
T
KN (y) dy = (N + 1)−1

N∑
k=0

∫
T
Dk(y) dy = (N + 1)−1

N∑
k=0

1 = 1.

• KN ≥ 0. In this respect, KN is quite different from DN .
• ‖KN‖L1(T) = 1 for all N . (Since KN ≥ 0, its L1 norm equals its integral.) Thus the

sequence of kernels (KN ) lacks the bad property of (DN ) on which our discussion of
divergence of Fourier series of continuous functions relied.
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• For any δ > 0, ∫
δ≤|y|≤1

2

|KN (y)| dy → 0 as N →∞.

(Of course, the absolute value signs on |KN | are redundant here.) Yet again, the
Dirichlet kernels lack this property.
This property is easily verified using the explicit formula for KN ;

KN (y) ≤ min(N + 1, (N + 1)−1 sin(πy)−2)

for all y.

Theorem. Let f ∈ C0(T). Then σN (f)→ f uniformly on T.
This stands in stark contrast to the behavior of SN (f), for general f .

Proof.

σN (f)(x)− f(x) =
∫ 1/2

−1/2

(
f(x− y)− f(x)

)
KN (y) dy

and therefore ∣∣σN (f)(x)− f(x)
∣∣ ≤ ∫ 1/2

−1/2

∣∣f(x− y)− f(x)
∣∣KN (y) dy.

We know what to do: Let ε > 0. Since T is compact and f is continuous, f is uniformly
continuous. So there exists δ such that |f(x− y)− f(x)| ≤ ε whenever y ∈ [−1

2 ,
1
2 ] satisfies

|y| ≤ δ. Now∫ 1/2

−1/2

∣∣f(x− y)− f(x)
∣∣KN (y) dy ≤

∫
|y|≤δ

εKN (y) dy + 2‖f‖u
∫
|y|>δ

KN (y) dy

≤ ε
∫ 1/2

−1/2
KN (y) dy + 2‖f‖u

∫
|y|>δ

KN (y) dy

≤ ε+ 2‖f‖u
∫
|y|>δ

KN (y) dy.

Therefore by the final property of (KN ) listed above,

lim sup
N→∞

sup
x
|σN (f)(x)− f(x)| ≤ ε,

for all ε > 0.
Corollary. The set P of all trigonometric polynomials P (x) =

∑
|k|≤M cke

2πikx is dense in
L2(T);

{
e2πinx : n ∈ N

}
is a complete orthonormal set in L2(T).

Of course, we have already proved this using the Stone-Weierstrass Theorem. But the
preceding theorem (whose proof did not rely on knowing this corollary) gives an alternative
proof.
Proof. The set of C0 of all continuous functions is dense in L2(T). By the Corollary, the
set P is dense in C0 in the uniform norm, hence is dense in C0 in the L2 norm.
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