See §3.4 of our text for this material.

1 Differentiation Theorem

Arbitrary Lebesgue measurable sets, and arbitrary (but locally integrable) Lebesgue measurable functions, possess a degree of regularity. One manifestation of this is Lusin's Theorem. If $f:[a,b]\to\mathbb{C}$ is measurable, then for any $\varepsilon>0$, there exists a continuous function $\varphi:[a,b]\to\mathbb{C}$ such that the measure of $\{x:f(x)\neq\varphi(x)\}$ is $<\varepsilon$. This lecture is about a different form of regularity.

Denote by B(x,r) the ball in \mathbb{R}^d centered at x with radius $r \in (0,\infty)$. The quantity

$$m(B(x,r))^{-1} \int_{B(x,r)} f(y) \, dm(y)$$

represents an average of f over B(x,r). This quantity is defined for all locally integrable Lebesgue measurable functions; recall that local integrability means that $\int_{|x| \leq R} |f(x)| dm(x) < \infty$ for all finite radii R. Recall that $m(B(x,r)) = \omega_d r^d$ where ω_d is a dimensional constant.

Theorem.

• For any Lebesgue measurable set $E \subset \mathbb{R}^d$,

$$\lim_{r\to 0^+}\frac{m(E\cap B(x,r))}{m(B(x,r))} \ \text{ exists and equals } \begin{cases} 1 & \text{ for almost every } x\in E\\ 0 & \text{ for almost every } x\notin E. \end{cases}$$

• For any locally integrable Lebesgue measurable function f,

$$\lim_{r\to 0^+} m(B(x,r))^{-1} \int_{B(x,r)} f\,dm \text{ exists and equals } f(x) \text{ for almost every } x\in \mathbb{R}^d.$$

The first conclusion says that for any E, if x is almost any point of E, then in any sufficiently small ball centered at x, the overwhelming majority of all points belong to E. Moreover, if x is almost any point of the complement of E, then the reverse holds.

The conclusion obviously fails at some points: If $E = [a, b] \subset \mathbb{R}^1$, and if x = a or x = b, then the ratio $m(E \cap B(x, r))/2r$ equals $\frac{1}{2}$ for all r < (b - a).

This theorem has lots of applications. A typical one is this: If $f \in L^1(\mathbb{R}^d)$ or $f \in L^{\infty}(\mathbb{R}^d)$, if $u(t,x) = f * h_t(x)$ is the solution of the heat equation that we constructed last week, then $\lim_{t\to 0^+} u(t,x) = f(x)$ for almost every $x \in \mathbb{R}^d$. (Recall that we had proved that $u(t,\cdot) \to f$ in the sense that $||u(t,\cdot) - f||_{L^1} \to 0$ as $t\to 0+$ if $f\in L^1$, but we had said nothing about pointwise convergence for discontinuous functions.)

The theorem has a stronger form: If f is locally integrable then

$$\lim_{t \to 0^+} m(B(x,r))^{-1} \int_{B(x,r)} |f(y) - f(x)| \, dm(y) = 0$$

П

for almost every $x \in \mathbb{R}^d$.

I believe that in the Fall, you learned a version of this theorem for d = 1: $F(x) = \int_{[0,x]} f \, dm$ is differentiable almost everywhere (in the Math 1A sense), and its derivative equals f(x). The connection is that (for h > 0)

$$h^{-1}(F(x+h) - F(x)) = h^{-1} \int_{[x,x+h]} f$$

is almost, though not quite, one of the averages in the above Theorem. A closer connection can be found by noting that

$$\left(h^{-1} \int_{[x,x+h]} f \, dm\right) - f(x) = h^{-1} \int_{[x,x+h]} (f(y) - f(x)) \, dm(y)$$

and consequently

$$\begin{split} \left| \left(h^{-1} \int_{[x,x+h]} f \, dm \right) - f(x) \right| &\leq h^{-1} \int_{[x,x+h]} \left| f(y) - f(x) \right| dm(y) \\ &\leq 2 (2h)^{-1} \int_{[x-h,x+h]} \left| f(y) - f(x) \right| dm(y) \\ &= 2 \cdot m (B(x,h))^{-1} \int_{B(x,h)} \left| f(y) - f(x) \right| dm(y); \end{split}$$

the stronger third form of the theorem asserts that this quantity tends to zero for almost every x.

2 Hardy-Littlewood maximal function

The key to an approach to this theorem that works in higher dimensions is the *Hardy-Littlewood maximal function*, which is defined by replacing the limit $r \to 0^+$ by a supremum over all r.

Definition. For $f \in L^1_{loc}(\mathbb{R}^d)$ and each $x \in \mathbb{R}^d$,

$$M(f)(x) = \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f| \, dm.$$

The first thing to notice is that $f \mapsto M(f)$ is not a linear operator. It is sublinear:

$$M(f+g) \le M(f) + M(g)$$
$$M(tf) = |t|M(f)$$

for any locally integrable (Lebesgue measurable) functions f, g and any $t \in \mathbb{C}$.

Obviously $M(f)(x) \leq ||f||_{L^{\infty}}$ for all $f \in L^{\infty}$ and all points x. The most important property of M is:

2

Maximal Theorem. Let $d \geq 1$. There exists $A < \infty$ such that for all $f \in L^1(\mathbb{R}^d)$ and all $\alpha > 0$,

$$m({x: M(f)(x) > \alpha}) \le A\alpha^{-1}||f||_{L^1}.$$

Recall the inequality of Markov and/or Chebyshev: If $g \in L^1$ then

$$m(\{x: |g(x)| > \alpha\}) \le A\alpha^{-1} ||g||_{L^1}.$$

Thus the conclusion of the theorem is exactly what one would conclude from Markov's inequality, if one knew that $||M(f)||_{L^1} \leq A||f||_{L^1}$ for all $f \in L^1$. Thus the form of this conclusion is rather natural.

It would be nice to know that $||M(f)||_{L^1} \leq A||f||_{L^1}$ for all $f \in L^1$, but this is wholly and irretrievably false; in fact, if $M(f) \in L^1$ then f = 0 almost everywhere. So the weaker conclusion represents the strongest statement that is actually true.

3 Proof of differentiation theorem

Proof of the first theorem, using the second: I'll prove the third form of the conclusion.

One may restrict attention to radii $r \leq 1$ (or any other positive quantity), since only the limit as $r \to 0$ does not depend on larger values. It suffices to show that for any $R < \infty$, the conclusion holds for almost all $x \in B(0,R)$. For such x, $\int_{B(x,r)} |f(y) - f(x)| \, dm(y)$ depends only on the restriction of f to B(0,R+r) and therefore for $0 < r \leq 1$, depends only on the restriction of f to B(0,R+1). Therefore it suffices to consider $\tilde{f} = f\mathbf{1}_{B(0,R+1)}$. If f is locally integrable, $\tilde{f} \in L^1$.

If φ is continuous then obviously $m(B(x,r))^{-1} \int_{B(x,r)} \varphi \to \varphi(x)$ as $r \to 0$, for every x, for as we have already seen,

$$\begin{split} \left| \varphi(x) - \frac{1}{m(B(x,r))} \int_{B(x,r)} \varphi(y) \, dm(y) \right| &\leq \frac{1}{m(B(x,r))} \int_{B(x,r)} \left| \varphi(x) - \varphi(y) \right| dm(y) \\ &\leq \max_{|y-x| \leq r} |\varphi(y) - \varphi(x)|, \end{split}$$

which tends to zero if φ is continuous at x.

To treat a general $f \in L^1$, let $\varepsilon > 0$ and choose $\varphi \in C_c(\mathbb{R}^d)$ such that $||f - \varphi||_{L^1} < \varepsilon$. We have proved that such a function φ exists. Set $g = f - \varphi$. Then $f = \varphi + g$, and each summand has its own advantage; one is continuous, while the other is small. To exploit these advantages, consider

$$\limsup_{r \to 0^{+}} \left| f(x) - \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) \, dm(y) \right|$$

which is

$$\leq \limsup_{r \to 0^{+}} \left| g(x) - \frac{1}{m(B(x,r))} \int_{B(x,r)} g(y) \, dm(y) \right|$$

$$+ \limsup_{r \to 0^{+}} \left| \varphi(x) - \frac{1}{m(B(x,r))} \int_{B(x,r)} \varphi(y) \, dm(y) \right|$$

$$\leq |g(x)| + \limsup_{r \to 0^{+}} \frac{1}{m(B(x,r))} \int_{B(x,r)} |g(y)| \, dm(y)$$

$$\leq |g(x)| + \sup_{r > 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |g(y)| \, dm(y)$$

$$= |g(x)| + M(g)(x),$$

using first the result shown above for the continuous function φ , then the definition of M.

Note that we have sacrificed information by replacing a \limsup by a \sup . The idea is that because g is small, even this \sup will be manageably small.

Let $\alpha > 0$ be arbitrary, and set

$$E_{\alpha} = \{x : \limsup_{r \to 0^{+}} \left| f(x) - \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) \, dm(y) \right| > \alpha \}.$$

We aim to prove that

$$m(E_{\alpha}) = 0$$

for every $\alpha > 0$. Therefore

$$m(\lbrace x : \limsup_{r \to 0^+} \left| f(x) - \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) \, dm(y) \right| > 0 \rbrace) = 0,$$

which is the conclusion of the Theorem.

If $x \in E_{\alpha}$ then $|g(x)| + M(g)(x) > \alpha$, so $|g(x)| > \frac{1}{2}\alpha$ or $M(g)(x) > \frac{1}{2}\alpha$ (or both, of course). Therefore

$$E_{\alpha} \subset \{x : |g(x)| > \frac{1}{2}\alpha\} \bigcup \{x : M(g)(x) > \frac{1}{2}\alpha\}.$$

Now

$$m(\{x: |g(x)| > \frac{1}{2}\alpha\}) \le 2\alpha^{-1}||g||_{L^1}$$

by Markov's inequality, while

$$m(\{x: |M(g)(x)| > \frac{1}{2}\alpha\}) \le 2A\alpha^{-1}||g||_{L^1}$$

by the Hardy-Littlewood maximal theorem. Therefore in all,

$$m(E_{\alpha}) \le 2\alpha^{-1} ||g||_1 + 2A\alpha^{-1} ||g||_1 \le 2(A+1)\alpha^{-1}\varepsilon.$$

This holds for every $\varepsilon > 0$. Therefore $m(E_{\alpha}) = 0$.

Note how essential it is that the constant A does not depend on the function g; this ensures that the product $(A + 1)\varepsilon$ can be made arbitrarily small by choosing ε to be arbitratily small; this could break down if A were to depend on g and thereby on ε .

On Wednesday 4/30 we finished here.

4 Proof of the Maximal Theorem

4.1 The one-dimensional case

Assume for now that the dimension d equals 1.

Covering Lemma. Let $K \subset \mathbb{R}$ be a compact set. Let $\{I_{\gamma} : \gamma \in \mathcal{C}\}$ be an open cover of K by intervals I_{γ} . Then there exists a finite subcover $\{I_{\gamma_j}\}$ for K such that no point of \mathbb{R} is contained in more than two of the intervals I_{γ_j} .

Assuming the Lemma for now, here is a proof of the Maximal Theorem: Let $f \in L^1$ and let $\alpha > 0$. Let $E_{\alpha} = \{x \in \mathbb{R} : M(f)(x) > \alpha\}$. Let K be any compact subset of E_{α} .

For any $x \in E_{\alpha}$ there exists r > 0 such that $m(B(x,r))^{-1} \int_{B(x,r)} |f| dm > \alpha$. Choose such an $r = r_x$, and set $I_x = B(x, r_x)$ (where B(x, r) denotes an open ball).

Now $C = \{I_x : x \in K\}$ is an open cover of K. Let $\{J_j : 1 \leq j \leq N\}$ be a finite subcover such that no point of K is contained in more than 2 intervals J_j .

By the criterion applied in choosing the intervals I_x ,

$$m(J_j)^{-1} \int_{J_j} |f| \, dm > \alpha$$
 for every index j .

This condition can be equivalently written as an upper bound for $m(J_i)$:

$$m(J_j) \le \alpha^{-1} \int_{J_j} |f| \, dm.$$

Now

$$m(K) \leq \sum_{j} m(J_{j})$$

$$\leq \sum_{j} \alpha^{-1} \int_{J_{j}} |f| dm$$

$$= \sum_{j} \alpha^{-1} \int |f| \mathbf{1}_{J_{j}} dm$$

$$= \alpha^{-1} \int |f| \cdot \sum_{j} \mathbf{1}_{J_{j}} dm$$

$$= \alpha^{-1} \int |f| \cdot 2 dm$$

$$= 2\alpha^{-1} ||f||_{1}.$$

Since Lebesgue measure is inner regular, $m(E_{\alpha})$ equals the supremum of m(K) over all compact subsets K. Thus we have proved that

$$m(E_{\alpha}) \le 2\alpha^{-1} ||f||_{L^1}.$$

4.2 Proof of the Covering Lemma (1D)

Suppose first that K is a closed bounded interval [a, b]. We may assume that \mathcal{C} is a finite collection; for if not, just replace it by a finite subcover. We will prove by induction on the number of elements of \mathcal{C} that there exists a subcover \mathcal{C}' of [a, b] such that no point is contained in more than two elements of \mathcal{C}' , and each endpoint a, b is contained in only one element of \mathcal{C}' .

First, discard from \mathcal{C} all intervals that are disjoint from [a,b]. Then choose an interval $I^* \in \mathcal{C}$ that contains a, whose right endpoint c is maximal among all right endpoints of intervals in \mathcal{C} that contain a.

If c>b then this single interval constitutes a cover with the required properties. Otherwise consider the interval [c,b], for which the collection $\tilde{\mathcal{C}}=\mathcal{C}\setminus\{I^*\}$ is a finite open cover. Discard all intervals in $\tilde{\mathcal{C}}$ that are disjoint from [c,b], and still call the resulting subcollection $\tilde{\mathcal{C}}$. Since $\tilde{\mathcal{C}}$ has fewer elements than \mathcal{C} , by the induction hypothesis there exists a subcover $\tilde{\mathcal{C}}'$ of [c,b] such that no point of \mathbb{R} belongs to more than 2 elements of $\tilde{\mathcal{C}}'$, and c,b each belong to only one.

I claim that $\mathcal{C}' = \tilde{\mathcal{C}}' \cup \{I^*\}$ is a cover for [a,b] with the required properties. It covers [a,c) and [c,b], so it is a cover. Any interval $J \in \tilde{\mathcal{C}}$ must be disjoint from a, for J intersects [c,b], so the right endpoint of J is >c; if $a \in J$ then J would have been chosen in place of I^* .

b lies in only one of the intervals in $\tilde{\mathcal{C}}'$, and does not lie in I^* , so lies in only one element of \mathcal{C}'

If $x \in [c, b]$ then $x \notin I^*$, and x belongs to at most two elements of $\tilde{\mathcal{C}}'$, so x belongs to at most two elements of \mathcal{C}' .

If $x \in [a, c)$ then $x \in I^*$, so we need to show that x belongs to at most *one* interval $J \in \tilde{\mathcal{C}}'$. Any interval $J \in \tilde{\mathcal{C}}'$ containing x, must intersect [c, b] and therefore must contain c. There can be only one such interval.

If K is a general compact set then let \tilde{K} be the smallest closed bounded interval that contains K. Create a cover of \tilde{K} by open intervals, by augmenting the given cover \mathcal{C} with all open intervals contained in $\mathbb{R} \setminus K$. Apply the special case proved above to \tilde{K} , to produce a cover of \tilde{K} by open intervals, with the required overlap property. Some of the intervals in this cover may not belong to the original cover; those are contained entirely in $\mathbb{R} \setminus K$, so may be discarded. The resulting subcollection is a cover of K with the required properties. \square

4.3 Higher dimensions

Now consider any dimension $d \geq 1$. The statement of the Covering Lemma generalizes to \mathbb{R}^d (with 2 replaced by a larger number that depends on the dimension), but the proof is more intricate. A more common approach uses a different type of covering lemma.

To any open ball B = B(x, r), associate the enlarged ball $B^* = B(x, 3r)$.

Vitali Covering Lemma. Let $d \geq 1$. Let $\{B_j\}$ be a finite collection of open balls in \mathbb{R}^d . There exists a pairwise disjoint subcollection $\{\tilde{B}_i\}$ such that for each j there exists i such that $B_j \subset \tilde{B}_i^{\star}$.

The Maximal Theorem is easily deduced from this lemma, using the fact that

$$\cup_j B_j \subset \cup_i \tilde{B}_i^{\star}$$

and consequently

$$m(\cup_j B_j) \le m(\cup_i \tilde{B}_i^{\star}) \le \sum_i m(\tilde{B}_i^{\star}) \le \sum_i 3^d m(\tilde{B}_i).$$

Now with the notation of the argument given above for d = 1,

$$\begin{split} m(K) &\leq \sum_{i} m(\tilde{B}_{i}^{\star}) \\ &= 3^{d} \sum_{i} m(\tilde{B}_{i}) \\ &\leq 3^{d} \alpha^{-1} \sum_{i} \int_{\tilde{B}_{i}} |f| \\ &= 3^{d} \alpha^{-1} \int_{\cup_{i} \tilde{B}_{i}} |f| \\ &\leq 3^{d} \alpha^{-1} ||f||_{1}. \end{split}$$

This sum can be controlled as above since in the proof of the maximal theorem one will have $m(\tilde{B}_i) \leq \alpha^{-1} \int_{\tilde{B}_i} |f| \dots$

Proof of the Vitali lemma: Let $\{B_j\}$ be given. Reorder these so that $|B_j| \ge |B_{j+1}|$ for all j.

Apply the following recursive selection procedure, in which B_1, B_2, B_3, \ldots are examined in sequence. Each is either selected, or rejected, upon being examined. The procedure then moves on from B_j to B_{j+1} . $\{B_i^*\}$ is the set of all balls that are selected.

Select B_1 . Let $n \geq 2$ and suppose that $B_1, B_2, \ldots, B_{n-1}$ have been examined. If B_n intersects some ball \tilde{B}_i that was selected at an earlier step, then B_n is rejected. Otherwise B_n is selected.

The procedure halts after finitely many steps, since the list of balls is finite. The construction certainly ensures that the selected balls are pairwise disjoint.

If B_n is a rejected ball then there exists a ball \tilde{B}_i that intersects B_n and was selected at an earlier step. Therefore the radius of \tilde{B}_i is \geq the radius of B_n . It follows from the triangle inequality that

$$B_n \subset \tilde{B}_i^{\star}$$
.

Therefore

$$\cup_i \left\{ \tilde{B}_i^{\star} \right\} \supset \cup_j B_j \supset K;$$

$$\left\{\tilde{B}_{i\star}\right\}$$
 is a cover for K .