
Math 202B — UCB, Spring 2014 — M. Christ

See §3.4 of our text for this material.

1 Differentiation Theorem

Arbitrary Lebesgue measurable sets, and arbitrary (but locally integrable) Lebesgue mea-
surable functions, possess a degree of regularity. One manifestation of this is Lusin’s The-
orem. If f : [a, b]→ C is measurable, then for any ε > 0, there exists a continuous function
ϕ : [a, b] → C such that the measure of {x : f(x) 6= ϕ(x)} is < ε. This lecture is about a
different form of regularity.

Denote by B(x, r) the ball in Rd centered at x with radius r ∈ (0,∞). The quantity

m(B(x, r))−1

∫
B(x,r)

f(y) dm(y)

represents an average of f over B(x, r). This quantity is defined for all locally integrable
Lebesgue measurable functions; recall that local integrability means that

∫
|x|≤R |f(x)| dm(x) <

∞ for all finite radii R. Recall that m(B(x, r)) = ωdr
d where ωd is a dimensional constant.

Theorem.
• For any Lebesgue measurable set E ⊂ Rd,

lim
r→0+

m(E ∩B(x, r))
m(B(x, r))

exists and equals

{
1 for almost every x ∈ E
0 for almost every x /∈ E.

• For any locally integrable Lebesgue measurable function f ,

lim
r→0+

m(B(x, r))−1

∫
B(x,r)

f dm exists and equals f(x) for almost every x ∈ Rd.

The first conclusion says that for any E, if x is almost any point of E, then in any
sufficiently small ball centered at x, the overwhelming majority of all points belong to E.
Moreover, if x is almost any point of the complement of E, then the reverse holds.

The conclusion obviously fails at some points: If E = [a, b] ⊂ R1, and if x = a or x = b,
then the ratio m(E ∩B(x, r))/2r equals 1

2 for all r < (b− a).
This theorem has lots of applications. A typical one is this: If f ∈ L1(Rd) or f ∈

L∞(Rd), if u(t, x) = f ∗ ht(x) is the solution of the heat equation that we constructed last
week, then limt→0+ u(t, x) = f(x) for almost every x ∈ Rd. (Recall that we had proved
that u(t, ·)→ f in the sense that ‖u(t, ·)− f‖L1 → 0 as t→ 0+ if f ∈ L1, but we had said
nothing about pointwise convergence for discontinuous functions.)

The theorem has a stronger form: If f is locally integrable then

lim
t→0+

m(B(x, r))−1

∫
B(x,r)

|f(y)− f(x)| dm(y) = 0
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for almost every x ∈ Rd.
I believe that in the Fall, you learned a version of this theorem for d = 1: F (x) =∫

[0,x] f dm is differentiable almost everywhere (in the Math 1A sense), and its derivative
equals f(x). The connection is that (for h > 0)

h−1(F (x+ h)− F (x)) = h−1

∫
[x,x+h]

f

is almost, though not quite, one of the averages in the above Theorem. A closer connection
can be found by noting that(

h−1

∫
[x,x+h]

f dm
)
− f(x) = h−1

∫
[x,x+h]

(f(y)− f(x)) dm(y)

and consequently∣∣(h−1

∫
[x,x+h]

f dm
)
− f(x)

∣∣ ≤ h−1

∫
[x,x+h]

|f(y)− f(x)| dm(y)

≤ 2(2h)−1

∫
[x−h,x+h]

|f(y)− f(x)| dm(y)

= 2 ·m(B(x, h))−1

∫
B(x,h)

|f(y)− f(x)| dm(y);

the stronger third form of the theorem asserts that this quantity tends to zero for almost
every x.

2 Hardy-Littlewood maximal function

The key to an approach to this theorem that works in higher dimensions is the Hardy-
Littlewood maximal function, which is defined by replacing the limit r → 0+ by a supremum
over all r.
Definition. For f ∈ L1

loc(Rd) and each x ∈ Rd,

M(f)(x) = sup
r>0

1
m(B(x, r))

∫
B(x,r)

|f | dm.

The first thing to notice is that f 7→M(f) is not a linear operator. It is sublinear:

M(f + g) ≤M(f) +M(g)
M(tf) = |t|M(f)

for any locally integrable (Lebesgue measurable) functions f, g and any t ∈ C.
Obviously M(f)(x) ≤ ‖f‖L∞ for all f ∈ L∞ and all points x. The most important

property of M is:
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Maximal Theorem. Let d ≥ 1. There exists A <∞ such that for all f ∈ L1(Rd) and all
α > 0,

m({x : M(f)(x) > α}) ≤ Aα−1‖f‖L1 .

Recall the inequality of Markov and/or Chebyshev: If g ∈ L1 then

m({x : |g(x)| > α}) ≤ Aα−1‖g‖L1 .

Thus the conclusion of the theorem is exactly what one would conclude from Markov’s
inequality, if one knew that ‖M(f)‖L1 ≤ A‖f‖L1 for all f ∈ L1. Thus the form of this
conclusion is rather natural.

It would be nice to know that ‖M(f)‖L1 ≤ A‖f‖L1 for all f ∈ L1, but this is wholly
and irretrievably false; in fact, if M(f) ∈ L1 then f = 0 almost everywhere. So the weaker
conclusion represents the strongest statement that is actually true.

3 Proof of differentiation theorem

Proof of the first theorem, using the second: I’ll prove the third form of the conclusion.
One may restrict attention to radii r ≤ 1 (or any other positive quantity), since only the

limit as r → 0 does not depend on larger values. It suffices to show that for any R <∞, the
conclusion holds for almost all x ∈ B(0, R). For such x,

∫
B(x,r) |f(y)− f(x)| dm(y) depends

only on the restriction of f to B(0, R + r) and therefore for 0 < r ≤ 1, depends only on
the restriction of f to B(0, R+ 1). Therefore it suffices to consider f̃ = f1B(0,R+1). If f is
locally integrable, f̃ ∈ L1.

If ϕ is continuous then obviously m(B(x, r))−1
∫
B(x,r) ϕ → ϕ(x) as r → 0, for every x,

for as we have already seen,∣∣∣ϕ(x)− 1
m(B(x, r))

∫
B(x,r)

ϕ(y) dm(y)
∣∣∣ ≤ 1

m(B(x, r))

∫
B(x,r)

∣∣ϕ(x)− ϕ(y)
∣∣ dm(y)

≤ max
|y−x|≤r

|ϕ(y)− ϕ(x)|,

which tends to zero if ϕ is continuous at x.
To treat a general f ∈ L1, let ε > 0 and choose ϕ ∈ Cc(Rd) such that ‖f − ϕ‖L1 < ε.

We have proved that such a function ϕ exists. Set g = f − ϕ. Then f = ϕ + g, and each
summand has its own advantage; one is continuous, while the other is small. To exploit
these advantages, consider

lim sup
r→0+

∣∣∣f(x)− 1
m(B(x, r))

∫
B(x,r)

f(y) dm(y)
∣∣∣
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which is

≤ lim sup
r→0+

∣∣∣g(x)− 1
m(B(x, r))

∫
B(x,r)

g(y) dm(y)
∣∣∣

+ lim sup
r→0+

∣∣∣ϕ(x)− 1
m(B(x, r))

∫
B(x,r)

ϕ(y) dm(y)
∣∣∣

≤ |g(x)|+ lim sup
r→0+

1
m(B(x, r))

∫
B(x,r)

|g(y)| dm(y)

≤ |g(x)|+ sup
r>0

1
m(B(x, r))

∫
B(x,r)

|g(y)| dm(y)

= |g(x)|+M(g)(x),

using first the result shown above for the continuous function ϕ, then the definition of M .
Note that we have sacrificed information by replacing a lim sup by a sup. The idea is

that because g is small, even this sup will be manageably small.
Let α > 0 be arbitrary, and set

Eα = {x : lim sup
r→0+

∣∣∣f(x)− 1
m(B(x, r))

∫
B(x,r)

f(y) dm(y)
∣∣∣ > α}.

We aim to prove that
m(Eα) = 0

for every α > 0. Therefore

m
(
{x : lim sup

r→0+

∣∣∣f(x)− 1
m(B(x, r))

∫
B(x,r)

f(y) dm(y)
∣∣∣ > 0}

)
= 0,

which is the conclusion of the Theorem.
If x ∈ Eα then |g(x)| + M(g)(x) > α, so |g(x)| > 1

2α or M(g)(x) > 1
2α (or both, of

course). Therefore

Eα ⊂ {x : |g(x)| > 1
2α}

⋃
{x : M(g)(x) > 1

2α}.

Now
m({x : |g(x)| > 1

2α}) ≤ 2α−1‖g‖L1

by Markov’s inequality, while

m({x : |M(g)(x)| > 1
2α}) ≤ 2Aα−1‖g‖L1

by the Hardy-Littlewood maximal theorem. Therefore in all,

m(Eα) ≤ 2α−1‖g‖1 + 2Aα−1‖g‖1 ≤ 2(A+ 1)α−1ε.

This holds for every ε > 0. Therefore m(Eα) = 0.
Note how essential it is that the constant A does not depend on the function g; this

ensures that the product (A + 1)ε can be made arbitrarily small by choosing ε to be
arbitratily small; this could break down if A were to depend on g and thereby on ε.

On Wednesday 4/30 we finished here.

4



4 Proof of the Maximal Theorem

4.1 The one-dimensional case

Assume for now that the dimension d equals 1.
Covering Lemma. Let K ⊂ R be a compact set. Let {Iγ : γ ∈ C} be an open cover of K
by intervals Iγ . Then there exists a finite subcover {Iγj} for K such that no point of R is
contained in more than two of the intervals Iγj .

Assuming the Lemma for now, here is a proof of the Maximal Theorem: Let f ∈ L1

and let α > 0. Let Eα = {x ∈ R : M(f)(x) > α}. Let K be any compact subset of Eα.
For any x ∈ Eα there exists r > 0 such that m(B(x, r))−1

∫
B(x,r)) |f | dm > α. Choose

such an r = rx, and set Ix = B(x, rx) (where B(x, r) denotes an open ball).
Now C = {Ix : x ∈ K} is an open cover of K. Let {Jj : 1 ≤ j ≤ N} be a finite subcover

such that no point of K is contained in more than 2 intervals Jj .
By the criterion applied in choosing the intervals Ix,

m(Jj)−1

∫
Jj

|f | dm > α for every index j.

This condition can be equivalently written as an upper bound for m(Jj):

m(Jj) ≤ α−1

∫
Jj

|f | dm.

Now

m(K) ≤
∑
j

m(Jj)

≤
∑
j

α−1

∫
Jj

|f | dm

=
∑
j

α−1

∫
|f |1Jj dm

= α−1

∫
|f | ·

∑
j

1Jj dm

= α−1

∫
|f | · 2 dm

= 2α−1‖f‖1.

Since Lebesgue measure is inner regular, m(Eα) equals the supremum of m(K) over all
compact subsets K. Thus we have proved that

m(Eα) ≤ 2α−1‖f‖L1 .
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4.2 Proof of the Covering Lemma (1D)

Suppose first that K is a closed bounded interval [a, b]. We may assume that C is a finite
collection; for if not, just replace it by a finite subcover. We will prove by induction on
the number of elements of C that there exists a subcover C′ of [a, b] such that no point is
contained in more than two elements of C′, and each endpoint a, b is contained in only one
element of C′.

First, discard from C all intervals that are disjoint from [a, b]. Then choose an interval
I∗ ∈ C that contains a, whose right endpoint c is maximal among all right endpoints of
intervals in C that contain a.

If c > b then this single interval constitutes a cover with the required properties. Oth-
erwise consider the interval [c, b], for which the collection C̃ = C \{I∗} is a finite open cover.
Discard all intervals in C̃ that are disjoint from [c, b], and still call the resulting subcollection
C̃. Since C̃ has fewer elements than C, by the induction hypothesis there exists a subcover
C̃′ of [c, b] such that no point of R belongs to more than 2 elements of C̃′, and c, b each
belong to only one.

I claim that C′ = C̃′ ∪ {I∗} is a cover for [a, b] with the required properties. It covers
[a, c) and [c, b], so it is a cover. Any interval J ∈ C̃ must be disjoint from a, for J intersects
[c, b], so the right endpoint of J is > c; if a ∈ J then J would have been chosen in place of
I∗.

b lies in only one of the intervals in C̃′, and does not lie in I∗, so lies in only one element
of C′.

If x ∈ [c, b] then x /∈ I∗, and x belongs to at most two elements of C̃′, so x belongs to at
most two elements of C′.

If x ∈ [a, c) then x ∈ I∗, so we need to show that x belongs to at most one interval
J ∈ C̃′. Any interval J ∈ C̃′ containing x, must intersect [c, b] and therefore must contain
c. There can be only one such interval.

If K is a general compact set then let K̃ be the smallest closed bounded interval that
contains K. Create a cover of K̃ by open intervals, by augmenting the given cover C with
all open intervals contained in R\K. Apply the special case proved above to K̃, to produce
a cover of K̃ by open intervals, with the required overlap property. Some of the intervals in
this cover may not belong to the original cover; those are contained entirely in R\K, so may
be discarded. The resulting subcollection is a cover of K with the required properties.

4.3 Higher dimensions

Now consider any dimension d ≥ 1. The statement of the Covering Lemma generalizes to
Rd (with 2 replaced by a larger number that depends on the dimension), but the proof is
more intricate. A more common approach uses a different type of covering lemma.

To any open ball B = B(x, r), associate the enlarged ball B? = B(x, 3r).
Vitali Covering Lemma. Let d ≥ 1. Let {Bj} be a finite collection of open balls in Rd.
There exists a pairwise disjoint subcollection {B̃i} such that for each j there exists i such
that Bj ⊂ B̃?

i .
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The Maximal Theorem is easily deduced from this lemma, using the fact that

∪jBj ⊂ ∪iB̃?
i

and consequently

m(∪jBj) ≤ m(∪iB̃?
i ) ≤

∑
i

m(B̃?
i ) ≤

∑
i

3dm(B̃i).

Now with the notation of the argument given above for d = 1,

m(K) ≤
∑
i

m(B̃?
i )

= 3d
∑
i

m(B̃i)

≤ 3dα−1
∑
i

∫
B̃i

|f |

= 3dα−1

∫
∪iB̃i

|f |

≤ 3dα−1‖f‖1.

This sum can be controlled as above since in the proof of the maximal theorem one will
have m(B̃i) ≤ α−1

∫
B̃i
|f | . . .

Proof of the Vitali lemma: Let {Bj} be given. Reorder these so that |Bj | ≥ |Bj+1| for
all j.

Apply the following recursive selection procedure, in which B1, B2, B3, . . . are examined
in sequence. Each is either selected, or rejected, upon being examined. The procedure then
moves on from Bj to Bj+1. {B∗i } is the set of all balls that are selected.

Select B1. Let n ≥ 2 and suppose that B1, B2, . . . , Bn−1 have been examined. If Bn
intersects some ball B̃i that was selected at an earlier step, then Bn is rejected. Otherwise
Bn is selected.

The procedure halts after finitely many steps, since the list of balls is finite. The
construction certainly ensures that the selected balls are pairwise disjoint.

If Bn is a rejected ball then there exists a ball B̃i that intersects Bn and was selected
at an earlier step. Therefore the radius of B̃i is ≥ the radius of Bn. It follows from the
triangle inequality that

Bn ⊂ B̃?
i .

Therefore
∪i
{
B̃?
i

}
⊃ ∪jBj ⊃ K;{

B̃i?
}

is a cover for K.
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