
Math 202B — UCB, Spring 2014 — M. Christ
Topic 1: Product Measures

Wednesday January 22 through Monday January 27, 2014

Preliminaries

Definition. Premeasure on an algebra: µ ≥ 0, µ(∅) = 0, countably additive whenever
disjoint union ∈ A. (These imply A ⊂ B ⇒ µ(A) ≤ µ(B).)
Definition. µ∗ = outer measure associated to a premeasure µ: µ∗(E) = inf

∑
j µ(Aj),

infimum over all coverings E ⊂ ∪jAj , Aj ∈ A.
Theorem. Let µ be premeasure on A and M = σ–algebra generated by A. Then
(i) µ∗|M is a measure, and coincides with µ on A; that is, µ∗|M is an extension of µ toM.
(ii) µ∗|M is the unique extension of µ to M if µ is σ–finite on A.

Products

Products are one of the most basic constructions in mathematics. Given a notion of a
structure on sets, and given two sets with this additional structure, it is virtually always
useful to have a natural way to associate such a structure to the product set. One sees this
in vector spaces; Abelian groups, metric spaces, topological spaces, manifolds, . . .
Definition. Measurable rectangles A×B . . .

Given measure spaces (X,M, µ) and (Y,N , ν), we seek to construct a measure, denoted
by µ× ν, on some σ-algebra C of subsets of X × Y , with these rather minimal properties:

Every measurable rectangle belongs to C, (1)
(µ× ν)(A×B) = µ(A)ν(B) for all measurable rectangles. (2)

Definition. Given measure spaces (X,M) and (Y,N ), M⊗N is the σ-algebra generated
by the collection of all measurable rectangles.

I’ll sometimes write Bn as shorthand for BRn , the Borel σ–algebra; this is the smallest
σ–algebra that contains all open subsets of Rn.
Example. Product of two copies of (R1,B1). What is B1⊗B1, in more concrete terms? It
contains all open sets — (countable unions of cubes with rational centers and sidelengths),
so it contains B2. Anything else? (No; we’ll return to this point in a subsequent lecture.)
This example calls attention to the indirect character of the definition of M⊗N .

Construction of µ× ν

Our next step is to construct a product of two measures.
Definition. A = {finite disjoint unions of measurable rectangles}.
Facts.
(i) A is an algebra.
(ii) A equals the collection of all (not necessarily pairwise disjoint) finite unions of measur-
able rectangles.
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See Prop 1.7 in our text. I won’t prove this in detail, but will indicate a couple of key
ideas in the proof. (It can be helpful to draw schematic pictures, representing measurable
rectangles by genuine rectangles in R2.)

Two identities are useful in the discussion:

(A×B) ∩ (A′ ×B′) = (A ∩A′)× (B ∩B′)
(A×B)c = (Ac × Y ) ∪ (X ×Bc).

Here’s how to show that a union E = ∪3
j=1(Aj×Bj) of three measurable rectangles can

be expressed as a finite union of pairwise disjoint ones: First consider X. Partition X into
8 pairwise disjoint measurable subsets, using a standard three set Venn diagram. Among
these 8 sets are A1 ∩A2 ∩A3; A1 \ (A2 ∪A3), et cetera. Denote these 8 sets as A(S), where
S ranges over the 8 subsets of {1, 2, 3}; A(S) is the set of all x ∈ X such that x ∈ Aj if and
only if j ∈ S. Likewise partition Y into 8 subsets B(T ), determined by the Venn diagram
associated to B1, B2, B3.

By taking products, obtain a partition of X × Y into a union of 64 pairwise disjoint
measurable rectangles C(S, T ). Let (x, y) ∈ X × Y . Define S = {i ∈ {1, 2, 3} : x ∈ Ai} and
T = {j : y ∈ Bj}. Then (x, y) ∈ C(S, T ).

If S, T are both nonempty then C(S, T ) ⊂ E = ∪3
j=1(Aj ×Bj). If S = ∅ then x /∈ ∪jAj ,

and if T = ∅ then y /∈ ∪jBj . Thus E is equal to a union of 7×7 = 49 of the sets C(S, T ).
This proof works fine for unions of arbitrarily many measurable rectangles; just change

3 to N and 8 to 2N . . .
Now let measures µ, ν on (X,M), (Y,N ) respectively be given. For E ∈ A define

ρ(E) =
∫
X
ν(Ex) dµ(x).

A useful alternative formula is

ρ(E) =
∫
X

(∫
Y

1E(x, y) dν(y)
)
dµ(x).

In particular, ρ(A×B) ≡ µ(A)ν(B).
If E ∈ A is expressed as a disjoint union E = ∪j(Aj×Bj), then the inner integral equals

∪j1Ajν(Bj), which is a measurable function of x; therefore the outer integral is defined.
Thus ρ(E) is well-defined, and obviously =

∑
j µ(Aj)ν(Bj).

ρ is obviously additive on disjoint sets in A since 1E1∪E2 = 1E1 + 1E2 and the integral
of a sum equals the sum of the integrals . . .
Fact. ρ is countably additive on A, hence is a premeasure.1

Proof. We will show that if Ej ∈ A, if E ∈ A, and if Ej ↗ E, then ρ(Ej) → ρ(E). This
together with the finite additivity of ρ establishes countable additivity (easy exercise).

1 “Countably additive” refers to countable disjoint unions that happen to belong to A; it is not claimed
that an arbitrary countable disjoint union of elements of A belongs to A.
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For each (x, y), 1Ej (x, y) ↗ 1E(x, y). Therefore by the Monotone Convergence Theo-
rem,

fj(x) =
∫
Y

1Ej (x, y) dν(y)↗
∫
Y

1E(x, y) dν(y) = f(x) ∀x.

Moreover, fj , f are obviously measurable; if E = ∪i(Ai ×Bi) then f(x) =
∑

i 1Ai(x)ν(Bi);
likewise for Ej , fj . By monotone convergence once more,

ρ(Ej) =
∫
X
fj dµ→

∫
X
f dµ = ρ(E).

Definition. µ× ν is the measure obtained by restricting the outer measure ρ∗ to M⊗N .
Theory of outer measures/premeasures above guarantees that the restriction of ρ∗ to A
agrees with ρ, so

(µ× ν)(A×B) ≡ µ(A)ν(B) ∀A ∈M, B ∈ N .

Recall that if (X,M) and (Y,N ) are σ–finite, then µ× ν is the unique extension which
agrees with ρ on A. Every set E ∈ A can be expressed as a finite disjoint union of
measurable rectangles. Therefore (µ × ν)(E) is uniquely determined by the requirement
that (µ× ν)(A×B) = µ(A)ν(B). Thus for products of two σ-finite measure spaces, there
can be at most one measure onM⊗N that satisfies (2). We have constructed it. The task
remaining is to verify that it has the properties stated in the Tonelli/Fubini theorems.

One might debate whether this construction is natural, but in the σ–finite case at least,
it produces the unique extension with the natural property that the measure of a product
of two sets equals the product of their measures.

This is more or less the end of the Wednesday 1/22 lecture. Please beware that lecture
notes are not carefully written and are barely proofread. They are not intended as a
replacement for our excellent text.

Fubini’s and Tonelli’s Theorems

The main issue in the development of the foundation of the theory of product measures
is not the construction of M ⊗ N and of µ × ν, but rather, the proof that these have
useful properties. Nearly everything one needs to know about product measures for most
mathematical practice is contained in the theorems of Tonelli and Fubini (and the variant
for complete measures).
Definition. Ex, Ey (These sets are called slices.); fx, fy . . .
Tonelli’s Theorem. Let (X,M, µ) and (Y,N , ν) be σ–finite measure spaces. Let E ∈
M⊗N , and let f : X × Y → [0,∞] be M⊗N–measurable.
(i) Ey ∈M for all y and Ex ∈ N for all x. Likewise fx is N–measurable for every x; fy is
N–measurable for every y.
(ii)

∫
Y fx dν(y) is anM–measurable function of x;

∫
X fy dµ(x) is an N–measurable function
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of y.
(iii)∫

X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y)

=
∫∫

X×Y
f(x, y) d(µ× ν)(x, y). (3)

In particular, this gives two ways to compute an integral with respect to µ× ν — and
thus two ways to compute the measure of an M⊗N–measurable set:

(µ× ν)(E) =
∫
X

(∫
Y

1E(x, y) dν(y)
)
dµ(x).

Note that the first equality alone does not directly refer to product measure. Its proof does
go through the product theory, though.
Fubini’s Theorem. For two σ–finite measure spaces and any f ∈ L1(µ× ν),
(i) fx, fy are measurable functions on Y,X for almost every x, y, respectively.
(ii) fx ∈ L1(Y, ν) for µ–almost every x ∈ X; fy ∈ L1(X,µ) for ν–almost every y ∈ Y .
(iii)

∫
Y fx dν(y) defines a measurable function of x, which belongs to L1(X,µ); likewise if

the roles of the variables are interchanged.
(iv) Equations (3) hold.

These are often used in tandem. If we want to apply Fubini to a function f to compute∫∫
f dµ×ν, we need to verify that f ∈ L1(µ×ν). For this, Tonelli’s theorem can potentially

be useful. Apply Tonelli to the nonnegative function |f |, and evaluate one of the two iterated
integrals — whichever happens to be more convenient — to show that

∫∫
|f | d(µ×ν) <∞.

Thus f ∈ L1, and now Fubini can be applied to f .
One example. Let X = Y = {0, 1, 2 . . .}, with counting measure and with all sets measur-
able. Define f(x, y) = 1 if y = x, = −1 if y = x+ 1, and = 0 otherwise. Then

∫
Y fx dν = 0

for every x, so
∫
X

∫
Y f dν(y) dµ(x) = 0. On the other hand

∫
X f

y dµ = 0 for every y ≥ 1,
and = 1 for y = 0, so

∫
Y

∫
X f dµ(x) dν(y) = 1. Put another way,

∞∑
x=0

∞∑
y=0

f(x, y) 6=
∞∑
y=0

∞∑
x=0

f(x, y).

Proof

Begin with proof of Tonelli’s Theorem. Recurrent theme: All we know aboutM⊗N
is that it is contained in any σ-algebra that contains A. So apparently the only viable
strategy for proving that every set in M⊗N has some property P, is to prove that

Every set in A has P,
The class of all sets with P contains some σ-algebra.
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One way to prove that a class contains a σ-algebra, is to prove that it is a σ-algebra.
Put another way: Instead of proving that every element of a σ–algebra D has a desired

property, we instead show that the collection of all sets having the desired property is a
σ–algebra; then exploit the minimality of D. This is a fundamental proof technique in this
sub-subject. It only applies if D is minimal among σ–algebras containing some specified
collection of sets.
Proof that Ex ∈ N : Consider

C = {E ⊂ X × Y : Ex ∈ N for all x} .

We know A ⊂ C, so it suffices to prove that C contains a σ-algebra. We’ll show that C is a
σ-algebra.

Certainly C contains ∅. Since Y \Ex = (Y \E)x, C is closed under complementation. If
Ej ⊂ X × Y then (with the obvious notation)

∪j (Ej)x =
(
∪j Ej

)
x
. (4)

Consider any x. If Ej ∈ C then (Ej)x ∈ N for all j, so since N is closed under countable
unions, ∪j(Ej)x ∈ N . So C is closed under countable unions.

The corresponding statement for functions follows easily. First treat simple functions,
then use the usual approximation-from-below scheme for nonnegative functions together
with the fact that a pointwise limit of measurable functions is measurable. Then use
f = f+ − f−.
Proof that x 7→ ν(Ex) defines an M–measurable function of x ∈ X: Let C be the class of
sets E ⊂ X × Y such that x 7→ ν(Ex) is a measurable function. Obviously ∅ ∈ C. C ⊃ A,
as observed above, so it suffices to prove that C is a σ-algebra (again!).

Since X,Y are σ-finite, an easy argument (omitted) reduces matters to the case where
µ(X), ν(Y ) <∞. Since (Ec)x = (Ex)c,

ν((Ec)x) = ν((Ex)c) = ν(Y )− ν(Ex)

and the right-hand side is a measurable function because it is a difference of two finite
measurable functions. So E ∈ C ⇒ Ec ∈ C.
C is obviously closed under disjoint unions: Given E,E′ ∈ C disjoint, note that (E∪E′)x

equals the disjoint union Ex ∪ E′x, so

ν((E ∪ E′)x) = ν(Ex ∪ E′x) = ν(Ex) + ν(E′x).

This is a sum of two measurable functions and hence is measurable.
And C is closed under countable ascending unions: If Ej ∈ C and Ej ⊂ Ej+1 for

all j then E = ∪∞j=1Ej ∈ C; Ex equals the ascending union of the sequence (Ej)x, and
ν((Ej)x)→ ν(Ex) by a basic property of measures. Since any pointwise limit of a sequence
of measurable functions is measurable, x 7→ ν(Ex) is measurable, so E ∈ C.

But what if E,E′ ∈ C are not necessarily disjoint? Then E ∪ E′ equals the disjoint
union E ∪ (E′ \E). The second set in this union is the issue. Of course E′ \E = E′ ∩Ec is
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the intersection of two sets in C. Can we treat intersections? There is no obvious formula
for ν((E ∩ E′)x) in terms of ν(Ex) and ν(E′x). So we seem to be stuck.

This difficulty forces a detour. I said earlier that there is only one viable strategy, but
that’s not accurate.

Detour: Monotone Classes, and the Monotone Class Lemma

Definition. Let Z be a set. A subset C ⊂ P(Z) is a monotone class if C is closed under for-
mation of countable ascending unions, and of countable descending intersections. (Nothing
is said about complements or differences of sets in this definition.)

Any collection of sets in P(Z) is contained in a unique smallest monotone class, because
the intersection of any collection of monotone classes in P(Z) is itself a monotone class.
(Straightforward verification omitted.)
Lemma. [Monotone Class Lemma]2 If A is an algebra of sets, then the smallest monotone
class C containing A equals the smallest σ-algebra containing A.

This is a statement in set theory alone, not measure theory. Complements/differences
enter through the assumption that A is an algebra.
Example. Let X be any set with at least 3 points. Let C ⊂ P(X) be the collection
of all subsets of X that contain exactly 2 points. If A ⊂ B are two sets in X, then
necessarily B = A! Therefore all ascending chains, and all descending chains, are trivial
and consequently C is a monotone class. But C is certainly not a σ–algebra.

This is more or less the end of the Friday 1/24 lecture.

Proof. Any σ-algebra is a monotone class, so the smallest σ-algebra A′ containing A
contains the smallest monotone class C containing A. We need to show that C contains A′.
It suffices to prove that C is a σ-algebra.

Claim: D = {A ⊂ Z : Ac ∈ C} is a monotone class. Proof: If for all j Aj ⊂ Aj+1 and
Acj ∈ C, then (∪jAj)c = ∩jAcj is a monotone intersection of elements of C, so belongs to C,
so ∪jAj ∈ D. In the same way it follows that D is closed under descending intersections.

Since D ⊃ A, D ⊃ C, which is the smallest monotone class containing A. By definition
of D, we have shown that A ∈ C ⇒ Ac ∈ C.

This sets the pattern for all other steps of the proof of the Lemma, but there is a wrinkle.
To prove closure under countable unions, we start with the simple matter of a union of two
sets, and require one of the two to belong to A.

Let A ∈ A. Let DA = {B ⊂ Z : A ∪B ∈ C}. Claim: DA is a monotone class. If the
claim is proved then we will have shown that

B ∈ C ⇒ A ∪B ∈ C for all A ∈ A. (5)

To prove the claim, let B1 ⊂ B2 ⊂ . . . with Bj ∈ DA. A ∪ (∪jBj) = ∪j(A ∪ Bj) is
an ascending union of elements of C, hence belongs to the monotone class C. Descending
intersections are handled in the same way, proving the claim.

2This slightly resembles Dynkin’s π − λ Theorem, a commonly used tool in probability theory, but it’s
not the same thing.
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Now let A ∈ C and again consider DA = {B ⊂ Z : A ∪B ∈ C}. Now

(5) says that A ⊂ DA.

Indeed, if B ∈ A then A∪B = B ∪A is the union of a set in A with a set in C; we showed
in the preceding step that any such union belongs to C.

The reasoning that gave (5) can now be repeated to prove that DA is a monotone class.
We have proved this for every A ∈ C, so

B ∈ C ⇒ A ∪B ∈ C for all A ∈ C,

the improvement being that A ∈ C rather than only A ∈ A.
It remains only to prove that C is closed under countable unions. Closure under unions

of two sets implies closure under arbitrary finite unions. The monotonicity hypothesis
immediately leads to closure under countable unions.

Proof of Tonelli and Fubini Theorems

Continue to assume that µ, ν are σ–finite measures. We need to show that if E ∈M⊗N
then x 7→ ν(Ex) is an M–measurable function. Let C be the class of all E ⊂ X × Y such
that Ex ∈ N for all x ∈ X and x 7→ ν(Ex) is measurable. We have shown that C is
closed under ascending unions, and under complementation. Since the complement of a
decreasing intersection is an ascending union of complements, it follows that C is closed
under descending unions. Thus C is a monotone class. Obviously C contains the algebra
A of all measurable rectangles. Therefore by the Monotone Class Lemma, C contains some
σ–algebra which contains A.

Let’s prove
∫
X ν(Ex) dµ(x) = (µ× ν)(E) for all E ∈M⊗N . Equivalently,∫

X

(∫
Y

1E(x, y) dν(y)
)
dµ(x) =

∫∫
X×Y

1E(x, y) d(µ× ν)(x, y).

This equation is already known to hold for all E ∈ A.
The set of all E for which it holds is a monotone class. For ascending unions this is a

direct consequence of the Monotone Convergence Theorem. For descending intersections it
follows by passing to complements and invoking the result for ascending unions; this works
because µ, ν and hence also µ× ν are finite measures . . .

Therefore it holds for all E in the smallest monotone class containing A, therefore for
all E in the smallest σ-algebra containing A, which by definition is M⊗N .

The roles of the two variables can be interchanged, so the other identity in Tonelli’s
theorem is also proved.

To prove Fubini’s Theorem, let f ∈ L1(X × Y, µ× ν). Express f = f+ − f− where f±

are nonnegative and this is the canonical decomposition we learned about in Math 202A.
Then f± ∈ L1. Apply Tonelli to f±, and reap all of its conclusions.

Because
∫
X(
∫
Y f
±(x, y) dν(y)) dµ(x) =

∫∫
f± d(µ× ν), we conclude that∫

X
(
∫
Y
f±(x, y) dν(y)) dµ(x) <∞
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and consequently that∫
Y
f±(x, y) dν(y) <∞ for µ–almost every x ∈ X.

Thus for almost every x, f+
x , f

−
x both belong to L1(Y, ν), and therefore

fx ∈ L1(Y, ν) for µ–almost every x ∈ X.

Therefore F (x) =
∫
Y f(x, y) dν(y) is well-defined and finite for almost every x. Moreover

F (x) =
∫
Y
f+(x, y) dν(y)−

∫
Y
f−(x, y) dν(y) = F+(x)− F−(x)

is a difference of two measurable functions, each of which belongs to L1(X,µ) and in
particular, is finite almost everywhere. Therefore F is measurable, F ∈ L1, and∫

X
F dµ =

∫
X
F+ dµ−

∫
X
F− dµ

=
∫∫

X×Y
f+ d(µ× ν)−

∫∫
X×Y

f− d(µ× ν)

=
∫∫

X×Y
f d(µ× ν).

Note. We have used the theory
[
premeasures outer measures measures

]
to construct

µ × ν, but that theory can be easily avoided. The above argument shows that for any
E ∈ M ⊗ N , x 7→ ν(Ex) is a well-defined measurable function. Define (µ × ν)(E) to be∫
X ν(Ex) dµ. It is easy to verify that this is a measure. If the general theory is not to be

used, then one needs to add a proof of equality with
∫
Y µ(Ey) dν(y). But this is also a

measure, and the collection C of all sets on which it agrees with µ×ν, is a σ-algebra. Hence
the two measures agree on µ× ν.

Complete measure spaces, and products

Suppose that (X,M, ν) and (Y,N , ν) are complete measure spaces. What about the
product space?

The product is rarely complete. Suppose ν(Y ) > 0, X contains some nonempty mea-
surable null set A, and Y contains some nonmeasurable set B. This situation arises in
the basic case where both measure spaces are R1 with the Lebesgue measurable sets and
Lebesgue measure. The product set E = A × B is not µ × ν measurable, because for any
a ∈ A, Ea = B is not N–measurable, violating a conclusion of Fubini’s Theorem. But
E ⊂ A×Y , which is a measurable rectangle, so (µ×ν)(A×Y ) = µ(A)ν(Y ) = 0. Therefore
µ× ν is not complete.

This is not a serious obstacle to a satisfactory theory. Let’s just complete (X ×Y,M⊗
N , µ× λ); let (X × Y,L, λ) be its completion.
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The following situation comes up in the statement of the theorem. Recall that if g is
a function defined almost everywhere on a complete metric space (X,M, µ), then if we
define G(x) = g(x) wherever g is defined, and G(x) = any value at all otherwise, then G is
measurable. Moreover, whether G belongs to L1 depends only on g, not on the arbitrary
choice made in defining G; and if G ∈ L1 then

∫
X Gdµ depends only on g, not on those

choices.
Theorem. Let (X,M, ν) and (Y,N , ν) be complete σ-finite measure spaces. Let (X ×
Y,L, λ) be the completion of (X×Y,M⊗N , µ×ν). Then the conclusions of Fubini’s/Tonelli’s
theorems hold for all L–measurable functions f , with these changes: One can only conclude
that fx is measurable for µ–almost every x, and fy is measurable for ν–almost every y.

In this situation, the function
∫
Y fx dν(y) is well-defined only µ–almost everywhere, but

the other conclusions still make sense because of the considerations two paragraphs above.
This version of the Tonelli/Fubini theorem follows from the version developed above to-

gether with the following lemma. One reduces the statement for functions to a correspond-
ing statement for sets. Since any L–measurable set is the union of a M⊗N–measurable
set with a subset of a M⊗N–null set, it suffices to prove the following.
Lemma. Let E ⊂ X × Y be M⊗N–measurable and assume that (µ × ν)(E) = 0. Let
E′ ⊂ E. Then for almost every x ∈ X, E′x ∈ N and ν(E′x) = 0. Therefore
the function x 7→ ν(E′x) vanishes for almost every x ∈ X. Since µ is complete, this is a
measurable function and its integral vanishes.

This is immediate from Tonelli’s Theorem. For almost every x ∈ X, E′x is a subset of
the null set Ex. Since (Y,N , ν) is complete, E′x ∈ N for almost every x and 0 ≤ ν(E′x) ≤
ν(Ex) = 0.

This is more or less the end of the Monday 1/27 lecture. The material on products
of complete measure spaces was discussed only very sketchily. Students should study this
subtopic in our text.

Comment — The Borel Hierarchy

Here is a fundamental point concerning the very nature of the Borel sets. Let X = R1.
Let G be the class of all open sets. Form the classes Gδ (all countable intersections of open
sets; this includes all open set, all closed sets, and more), Gσδ (all countable unions of sets
in Gδ), Gδσδ (all countable intersections of sets in Gσδ), and so forth. This produces an
ascending collection of subsets of the Borel σ-algebra B ⊂ P(R1).

A natural way to try understand the Borel subsets of R1 is in terms of this hierarchy
of sets. However, Lebesgue himself proved that this hierarchy is a bit complicated: No
matter how many times one iterates this construction, it never stabilizes. This is a subtler
statement than it may at first encounter appear to be. A precise formulation requires the
theory of ordinal numbers, and in particular, of the countable ordinals. See §0.4 of our text.

Define G1 to be the collection of all open sets, and inductively define

Gn+1 = (Gn)δσ.
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Lebesgue showed that Gn+1 properly contains Gn for all n. So define

Gω = ∪nGn

in order to incorporate all of these. Is Gω closed under countable unions? If so, then (it is
easily seen to be closed under complements) it would be the Borel σ-algebra.

Suppose that En ∈ Gn. Form E = ∪nEn. Does E necessarily belong to Gω? Lebesgue
proved that in general, it does not. Therefore B also contains (Gω)δσ. Call this set Gω+1.
Inductively define Gω+n+1 as above. Form G2ω = ∪∞n=1Gω+n. Is G2ω closed under countable
unions? Nope (says Lebesgue). Inductively form G3ω, . . .Gnω for all n ∈ N. Go ahead and
form Gω·ω = ∪∞n=1Gnω. The total number of steps we have taken is still countable.

Lebesgue proved that iterating this process for any countable number of steps never
produces a collection of sets that is closed under countable unions. More precisely: To
each countable ordinal α is associated a set Gα of this type. Lebesgue showed that for any
countable ordinal α, Gα+1 strictly contains Gα.

Form the union of Gα over all countable ordinals (this requires transfinite induction;
see Folland). The good news is that this union does equal B. The bad news is that there
are uncountably many countable ordinals. Thus it takes uncountably many operations to
construct all Borel sets from the open sets.

Does this complication arise in mathematical practice? It does arise, in that it forces
us to proceed indirectly in discussing Borel σ-algebras.3 Yet it also fails to arise, in the
sense that sets encountered in any direct way tend never to be very high in this hierarchy;
Gδσδσδ probably suffices for any sets I’ve ever encountered in any direct way in the contexts
of Fourier transform or partial differential equations. A simple example: Any Lebesgue
measurable set can be expressed as E = F ∪A where F is a countable union of closed sets,
and A is a Lebesgue null set. For most purposes, E is indistinguishable from F , which
is in Gδσ. This is why one does not often find much discussion of the Borel hierarchy in
introductory texts on measure and integration.

3Or to prove everything by means of transfinite induction.
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