
Mathematics 202B, Spring 2014 — M. Christ

Final Examination Solutions

Except where otherwise indicated, problems are set in a general measure space

(X,A, µ). (I meant to say that (X,A, µ) is always assumed to be σ–finite, but

I forgot to write that.) d is any dimension ≥ 1, and m denotes Lebesgue mea-

sure on Rd. Lp = Lp(X,A, µ) is a collection of equivalence classes of functions

under the equivalence relation of equality almost everywhere with respect to µ.

‖f‖p = ‖f‖Lp = ‖f‖Lp(X,A,µ).

(1a) State the Riesz Representation Theorem for bounded complex-valued linear

functionals.

Solution. Let X be a locally compact Hausdorff space. Let C0(X) be equipped

with the supremum norm. Let M(X) be the space of all complex Radon measures

on X. Let ` : C0(X) → C be a bounded (complex) linear functional. Then there

exists a unique µ ∈ M(X) such that `(f) =
∫
X
f dµ for all f ∈ C0(X). Moreover,

‖µ‖M(X) = ‖`‖C0(X)∗ . Finally, this correspondence between elements of (C0(X))∗ and

M(X) is a bijection. �
(One could also define Radon measures, but I did not insist on that. A complex

Radon measure is a complex measure on B(X), the smallest σ–algebra generated by

the open subsets of X, that is of the form µ = ν+ − ν− + iλ+ − iλ−, where ν± and

λ± are finite positive Radon measures; they are outer regular on arbitrary Borel sets,

and inner regular on all open sets.) �

(1b) In the proof of the Riesz Representation Theorem for positive linear functionals,

one constructs a measure by first defining a set function on arbitrary sets, then

proving that this function is a measure on a certain σ–algebra. What is the definition

of this set function?

Solution. First, for any open set O define ν(O) = supf≺O `(f), where f ≺ O means

that f : X → [0,∞) is continuous, f(x) ≤ 1 for all x ∈ X, and the support of f is

contained in O. Second, for any set E ⊂ X define ρ(E) = infO⊃E ν(O), where the

infimum is taken over all open sets O containing E. This ρ is the set function in

question. �

(1c) Let (X,A, µ) and (Y,B, ν) be two measure spaces. How is A × B defined? (I

goofed; this is called A⊗ B by some authors, including ours.)

How is µ× ν defined?

Solution. A×B = A⊗B is defined to be the smallest σ–algebra of subsets of X×Y
that contains all measurable rectangles. A measurable rectangle is a subset of the

form A×B where A ∈ A and B ∈ B.
1
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µ× ν is defined as follows: For any set E ⊂ X × Y , define

ρ∗(E) = inf
{(Aj ,Bj)}

∑
j

µ(Aj)ν(Bj)

where the infimum is taken over all countable families of measurable rectangles Aj×Bj

whose union contains E.

One proves that ρ∗ is an outer measure, and that every measurable rectangle is mea-

surable in the sense of Caratheodory with respect to ρ∗. A theorem of Caratheodory

associates to any outer measure a σ–algebra, such that the restriction of ρ∗ to that

σ–algebra is a measure. The restriction of ρ∗ to A⊗ B is defined to be µ× ν. �

(1d) Briefly outline an example of a compact set K ⊂ R and a continuous function

f : R → R such that m(K) = 0 but m(f(K)) > 0. (You need not prove that your

example is correct.)

Solution. Let C ⊂ [0, 1] be the Cantor set defined by successively removing middle

thirds of intervals. After n steps of the construction of C, [0, 1] is divided into 2n

open intervals Inj , where Inj lies to the left of Inj+1 for each j ∈ {1, 2, . . . , 2n − 1},
together with the compact set Cn = [0, 1] \ ∪2nj=1I

n
j . Prove that there exists a unique

nondecreasing function g : [0, 1] → [0, 1] that satisfies g(x) ≡ j2−n for all x ∈ Inj ,

and that g is continuous. Define f(x) = g(x) + x. Then g([0, 1]) = [0, 2], g is strictly

increasing, and g([0, 1] \ C) can be shown to have Lebesgue measure 1, so g(C) must

have Lebesgue measure equal to 1. But of course m(C) = 0. �

(1e) List two major theorems of this course whose proofs either directly relied on

Zorn’s Lemma or the Axiom of Choice, or used other results whose proofs relied

directly on one of these.

Solution. (i) Alaoglu’s Theorem relied on Tychonoff’s theorem (about the compact-

ness of arbitrary products of compact topological spaces), which in turn relied directly

on the Axiom of Choice.

(ii) Our proof of the Hahn-Banach Theorem relied on Zorn’s Lemma. �

(1f) Let X be a normed vector space and let X∗ be its dual space. Define the

weak∗ topology.

Solution. This is a topology on X∗. Open sets are all unions of finite intersections

of sets

V`0,g,δ = {` ∈ X∗ : |`(g)− `0(g)| < δ}.
�

(1g) Give an example of a sequence of Radon measures µn on R such that µn → 0

vaguely, but ‖µn‖M ≥ 1 for all n.
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Solution. µn(E) = m(E ∩ [n, n+ 1]) for n ∈ N. �

(1h) Define the Schwartz space S. Define the (standard) topology on this space.

Solution. S is the set of all infinitely differentiable functions f : Rd → C with the

property that for each α and each M there exists C = Cα,M,f such that |∂αx f(x)| ≤
C(1 + |x|)−M for all x ∈ Rd. (S is given a vector space structure via pointwise

addition and scalar multiplication.)

S has the topology defined by the countable family of seminorms

‖f‖k,M = sup
x∈Rd

∑
0≤|α|≤M

(1 + |x|)M |∂αx f(x)|.

This is the smallest topology that contains all sets

Vg,k,M,δ = {f ∈ S : ‖f − g‖k,M < δ}.

�

(1i) The proof of an important result of this course relied on the fact that the second

derivative of ϕ(x) = ex is nonnegative. State that result.

Solution. Hölder’s inequality: If p ∈ [1,∞] and q = p′ = p/(p− 1) (q =∞ if p = 1;

q = 1 if p =∞) then fg ∈ L1 and |
∫
fg dµ| ≤ ‖f‖Lp‖g‖Lq . �

(The convexity of ex is not needed to treat the cases p = 1,∞ of Hölder’s inequality.

I didn’t quibble about this distinction.)

(1j) Let p ∈ [1,∞) and let f, g ∈ Lp(R). Define: g is a strong Lp derivative of f .

Solution. g is a strong Lp derivative of f if

y−1(τ−yf − f)→ g in Lp norm as y → 0.

�
(One can make this definition either for genuine functions or for equivalence classes

of functions; changing f, g on sets of measure zero has no effect in the definition.)

(1k) State Chebyshev’s inequality.

Solution. Let p ∈ [1,∞) and f ∈ Lp = Lp(X,A, µ). Then for any α ∈ (0,∞),

µ({x : |f(x)| > α}) ≤ α−p‖f‖pp.

�

(1l) In this course we proved that the set of all infinitely differentiable functions

with compact supports is dense in Lp(Rd) for 1 ≤ p <∞, by deducing this from the

simpler fact that Cc(Rd) is dense in Lp. What technique or techniques was/were used

in this deduction? (Short answer; a few words suffices.)

Solution. Convolution with C∞ (compactly supported) functions. �
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(One could also mention the procedure of forming the family ϕt(x) = t−dϕ(t−1x),

but I view that as a subsidiary idea and I gave full credit for mention of convolution

with C∞ functions.)

(2) Show that convolution is associative. That is, for any f, g, h ∈ L1(Rd,B,m),

(f ∗ g) ∗ h = f ∗ (g ∗ h) almost everywhere.

◦ I have simplified your task slightly by assuming Borel measurability.

◦ Recall that (f ∗ g)(x) =
∫
f(x− y)g(y) dm(y).

◦ You may use facts shown in the course concerning convolutions of two L1 functions,

such as that the integral defining such a convolution is absolutely convergent for almost

every x ∈ Rd, and defines an L1 function of x.

◦ Hint: Use Fubini’s Theorem.

Solution. Choose representatives f, g, h of the associated equivalence classes. These

are Borel measurable functions, defined at every point of Rd. Let x ∈ Rd. Consider

the functions Φx : Rd × Rd → C and Ψx : Rd × Rd → C defined to be

Φx(y, z) = f(x− y − z)g(y)h(z) and Ψx(u, v) = f(x− u)g(u− v)h(v).

Each is a product of three factors, and each factor is a Borel measurable function,

being the composition of a Borel measurable function with an invertible linear map-

ping. For instance, (x, y, z) 7→ f(x − y − z) is the composition of F (u, v, w) = f(u)

with the mapping (u, v, w) 7→ (u− v−w, v, w); F is measurable since it is of product

form and f is measurable.

For almost every x, Φx ∈ L1. Indeed, we know by Tonelli’s Theorem that∫∫
Rd×Rd

|Φx(y, z)| dm(y, z) =

∫
(

∫
|Φx(y, z)| dm(y)) dm(z),

and that y 7→ Φx(y, z) is Borel measurable for every z and that the inner integral

defines a Borel measurable function of z. We have proved in the course that∫
(

∫
|Φx(y, z)| dm(y)) dm(z) =

∫
(

∫
|f(x− z − y)| · |g(y)| dm(y))|h(z)| dm(z)

=

∫
(|f | ∗ |g|)(x− z)|h(z)| dm(z)

is finite for almost every x. Therefore for almost every x ∈ Rd, Φx ∈ L1(Rd × Rd).

Therefore by Fubini’s Theorem, for any such x,∫
(

∫
f(x− z − y) · g(y) dm(y))h(z) dm(z) =

∫∫
Rd×Rd

f(x− y − z)g(y)h(z) dm(y, z),
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that is, (
(f ∗ g) ∗ h

)
(x) =

∫∫
Rd×Rd

Φx(y, z) dm(y, z).

Now for any x ∈ Rd, Φx(y, z) = Ψx(u, v) where (u, v) = (y + z, z). Because the

mapping (y, z) 7→ (y + z, z) is an invertible linear transformation of Rd × Rd with

Jacobian determinant ≡ 1,∫∫
Rd×Rd

Φx(y, z) dm(y, z) =

∫∫
Rd×Rd

Ψx(u, v) dm(u, v).

For any x, Φx ∈ L1(Rd ×Rd) if and only if Ψx ∈ L1(Rd ×Rd); so Ψx ∈ L1 for almost

every x.

For any x for which Ψx ∈ L1, a direct application of Fubini’s Theorem gives∫∫
Rd×Rd

Ψx(u, v) dm(u, v) =

∫ ( ∫
Ψx(u, v) dm(v)

)
dm(u)

=

∫
f(x− u)

( ∫
g(u− v)h(v) dm(v)

)
dm(u)

=

∫
f(x− u)(g ∗ h)(u) dm(u)

=
(
f ∗ (g ∗ h)

)
(x).

We conclude that
(
(f ∗ g) ∗ h

)
(x) =

(
f ∗ (g ∗ h)

)
(x) for almost every x ∈ Rd. �

(3) Let X be a normed vector space and let V be a subspace of X. Show that if V

is norm-closed then V is weakly closed.

Solution. Suppose that V is a norm-closed subspace of X. Suppose that x /∈ V . By

a corollary to the Hahn-Banach Theorem, there exists f ∈ X∗ such that f |V ≡ 0,

and f(x) = 1. The set O = {y ∈ X : |f(y)− 1| < 1} is an open subset of X in the

weak topology, which contains x but contains no element of V .

Thus we have shown that X \ V is open in the weak topology; so V is weakly

closed. �

(4) Let X be a locally compact Hausdorff space and B the σ–algebra of Borel subsets

of X. Let µ be a (positive) Radon measure on B. Prove that for any p ∈ [1,∞),

Cc(X) is dense in Lp(X,B, µ).

Solution. Consider any Borel set E ⊂ X satisfying 0 ≤ µ(E) < ∞. Let ε > 0. By

inner and outer regularity of Radon measures (on sets of finite measures), there exist

K ⊂ E ⊂ O a compact set and an open set, respectively, such that

µ(E)− ε < µ(K) ≤ µ(E) ≤ µ(O) < µ(E) + ε.
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By Urysohn’s Lemma there exists ϕ ∈ Cc(X) such that ϕ ≡ 1 on K, ϕ is supported

in O, and 0 ≤ ϕ(x) ≤ 1 for all x ∈ X. Therefore

|1E − ϕ| ≤ 1O\K .

Therefore

‖1E − ϕ‖p ≤ µ(O \K)1/p ≤ (2ε)1/p.

So we have shown that 1E can be approximated arbitrarily closely in Lp norm by

functions in Cc(X).

Now consider any f ∈ Lp. Let ε > 0. There exists a simple function g =∑N
n=1 cn1En such that ‖f − g‖p < ε, where each set En is Borel and µ(En) < ∞.

Choose ϕn ∈ Cc(X) such that ‖ϕn − 1En‖p ≤ N−1(1 + maxn |cn|)−1ε. Then ψ =∑
n cnϕn ∈ Cc(X), and ψ satisfies

‖ψ − g‖p ≤
∑
n

|cn|‖ϕn − 1En‖p ≤ ε,

using Minkowski’s inequality (the triangle inequality for Lp norms). In all, ‖f−ψ‖p ≤
2ε, again by Minkowski’s inequality. �

(5) Let (Kn) be a sequence of functions in L1(Rd) such that ‖Kn‖L1 is uniformly

bounded,
∫
Rd Kn dm = 1, and for any δ > 0,

∫
|x|≥δ |Kn(x)| dm(x) → 0 as n → ∞.

Show that if f : Rd → C is bounded and uniformly continuous, then f ∗ Kn → f

uniformly on Rd.

Solution. Let A = supn ‖Kn‖L1 < ∞. Let ε > 0 be given. Choose δ > 0 so

that |f(x) − f(x′)| ≤ ε whenever |x − x′| ≤ δ. I’ll write ‖f‖∞ as shorthand for

supz∈Rd |f(x)|; this supremum is indeed equal to the L∞ norm anyway, for any

bounded continuous function.

For any n,

f ∗Kn(x)− f(x) =

∫
f(x− y)Kn(y) dm(y) − f(x)

=

∫ (
f(x− y)− f(x)

)
Kn(y) dm(y)
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since
∫
Kn = 1, and consequently∣∣f ∗Kn(x)− f(x)

∣∣ ≤ ∫ ∣∣f(x− y)− f(x)
∣∣ · |Kn(y)| dm(y)

=

∫
|y|≤δ

∣∣f(x− y)− f(x)
∣∣ · |Kn(y)| dm(y)

+

∫
|y|>δ

∣∣f(x− y)− f(x)
∣∣ · |Kn(y)| dm(y)

≤
∫
|y|≤δ

ε|Kn(y)| dm(y) + 2‖f‖∞
∫
|y|>δ
|Kn(y)| dm(y)

≤ εA+ 2‖f‖∞
∫
|y|>δ
|Kn(y)| dm(y).

Choose N <∞ so that
∫
|y|>δ |Kn(y)| dm(y) < (1 + ‖f‖∞)−1ε for all n ≥ N . Then

we have shown that∣∣(f ∗Kn)(x)− f(x)
∣∣ < Aε+ 2ε for all n ≥ N .

Since ε > 0 is arbitrary, this completes the proof. �

(6) Let (X,A, µ) be σ–finite. Let p ∈ [1,∞) and let q = p′ = p/(p − 1) be the

exponent conjugate to p; q = ∞ if p = 1. Let T : Lp → Lp be a linear mapping.

Suppose that whenever fn, f ∈ Lp and fn → f in Lp norm,
∫
T (fn)g dµ→

∫
T (f)g dµ

for all g ∈ Lq. Prove that T is bounded.

Solution. Consider the graph GT = {(f, T (f)) : f ∈ Lp} ⊂ Lp × Lp. To show that

GT is closed, consider any sequence (fn) ∈ Lp such that fn → f ∈ Lp and T (fn) →
F ∈ Lp as n → ∞, with convergence in Lp norm for both sequences. In order to

apply the CGT, we must show that F = T (f).

If F 6= T (f), then there exists a bounded linear functional ` ∈ (Lp)∗ such that

`(F ) 6= `(T (f)). The dual of Lp is canonically isomorphic to Lq; there exists g ∈ Lq
such that `(h) =

∫
h g dµ for all h ∈ Lp. Thus

∫
F g dµ 6=

∫
T (f) g dµ.

Since T (fn)→ F in Lp norm,∫
T (fn) g dµ = `(T (fn))→ `(F ) =

∫
F g dµ as n→∞

because ` is continuous. On the other hand, it is a hypothesis of this problem that∫
T (f) g dµ = lim

n→∞

∫
T (fn) dµ.

Thus the assumption F 6= T (f) has led to a contradiction.
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Lp is a Banach space. Therefore T is a linear mapping from one Banach space

to another Banach space, which has closed graph. Therefore by the Closed Graph

Theorem, T is bounded. �
(Incidentally, one does not need the full strength of the Lp–Lq duality here. One

only needs to know Hölder’s inequality, and the fact that if 0 6= h ∈ Lp then there

exists g ∈ Lq such that
∫
hg dµ 6= 0. To construct such a function g is easy, even

if X is not σ–finite. Just let g be the product of h with the indicator function of

{x : N−1 ≤ |h(x)| ≤ N}, for sufficiently large N ∈ N.)

(7) Let X be a Banach space of countable dimension. (That is: There exists a

countable subset {xn} of X such that every element of X can be represented as a

finite linear combination of these elements, and if
∑

n cnxn = 0 and cn = 0 for all but

finitely many n, then cn = 0 for all n.) Show that X has finite dimension.

Solution. (This is perhaps a bit tricky, but it was on one of the problem sets.) If

{xn} is finite there is nothing to prove, so suppose the contrary. I’ll prove that X is

spanned by a finite subset of {xn}, which is a contradiction.

Enumerate the given basis using N, so our basis is {xn : n ∈ N}. Let Wn be the

collection of all finite linear combinations of these basis elements; Wn is the collection

of all quantities
∑N

n=1 cnxn, where N ranges over all of N.

Wn is a subspace of X. Since it is finite-dimensional, Wn is closed. Since ∪nWn =

X, and since X is a complete metric space, by the Baire Category Theorem there

must exist N such that the closure of WN contains some open ball of positive radius.

Since WN is closed, it contains a ball of positive radius. Therefore for any y ∈ WN ,

WN − y contains an open ball centered at 0. Since WN is a subspace, it contains all

of X. �
(There was a silly and unintentional slip in the formulation of the problem on

the exam, but it was actually correct: If X has countably infinite dimension then a

contradiction is reached. Therefore any assertion can be proved; in particular, X has

finite dimension.)

(8) Let T = R/Z. Consider the measure space (T,A,m) where A denotes the

Lebesgue measurable sets and m is Lebesgue measure. Let α ∈ R be irrational.

Define T : L2(T)→ L2(T) by Tf(x) = f(x+ α)− f(x). Here addition is interpreted

modulo Z, so x + α ∈ T. Consider any g ∈ L2(T). Give a necessary and sufficient

condition on g for there to exist a solution f ∈ L2(T) of the equation Tf = g.

Solution. Tf = τ−αf − f . We know that for all n ∈ Z and all h ∈ L1(T),

τ̂yh(n) =

∫
h(x− y)e−2πixn dm(x) = e−2πiynĥ(n).
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Recall that since T has finite measure, L2(T) ⊂ L1(T) by Hölder’s inequality.

Thus

T̂ f(n) =
(
e2πiαn − 1

)
f̂(n) ∀n ∈ Z.

Therefore if g ∈ L2 and Tf = g, then(
e2πiαn − 1

)
f̂(n) = ĝ(n) ∀n ∈ Z.

The factor
(
e2πiαn − 1

)
vanishes for no integer n, because α is irrational.

If f ∈ L2 then f̂ ∈ L2. Therefore given g ∈ L2, a necessary condition for there to

exist a solution f ∈ L2 is that

(1)
∑
n∈Z

∣∣e2πiαn − 1
∣∣−2|ĝ(n)|2 <∞.

Convesely, if g ∈ L2 satisfies (1), then there exists f ∈ L2 satisfying Tf = g.

Indeed, the mapping h 7→ ĥ is a bijection from L2(T) to `2(Z). Therefore if g

satisfies (1) then there exists (a unique equivalence class of) f ∈ L2 such that f̂(n) =(
e2πiαn − 1

)−1
ĝ(n) for every n ∈ Z. Then T̂ f(n) = ĝ(n) for every n. Since the

mapping h 7→ ĥ from L2 to `2 is injective, Tf = g. �


