
Math 1B — UCB, Spring 2013 — M. Christ
Summary of Lecture 2, 1/25/2013

Trigonometric Integrals

This lecture is based primarily on §7.2 of our text.

0. Basics. Be sure you know the basic formulas:

sin′ = cos cos′ = − sin tan′ = sec2 sec′ = tan sec

You should also be familiar with the use of simple substitutions like t = 3x, for example,∫
cos(3x) dx =

∫
cos(t)1

3
dt = 1

3
sin(t) + C = 1

3
sin(3x) + C.

Another example:∫
cos(2x) dx = (substituting 2x = u with du = 2dx)

∫
cos(u)·1

2
du = 1

2
sin(u)+C = 1

2
sin(2x)+C.

I will sometimes do these calculations in a single step, without showing all of the intermediate
steps.

1. Half-angle formulas. How to integrate higher powers of sin, cos? The first thing(s) to
know are the two half-angle formulas:

cos2(x) =
1 + cos(2x)

2
, and sin2(x) =

1− cos(2x)

2
.

These can simplify integrals by reducing second powers of sin, cos to first powers.

Application: Using a half-angle formula to evaluate
∫

cos2(x) dx:∫
cos2(x) dx =

∫
1
2
(1 + cos(2x)) dx

= 1
2

∫
(1 + cos(2x)) dx

= 1
2

∫
1 dx+ 1

2

∫
cos(2x) dx

= 1
2
x+ 1

2
· 1

2
sin(2x) + C

= 1
2
x+ 1

4
sin(2x) + C.

We can check our work:

d

dx

(
1
2
x+ 1

4
sin(2x)

)
= 1

2
· 1 + 1

4
· cos(2x) · 2 = 1

2
(1 + cos(2x)) = cos2(x).
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2. The integral of sec(x) : a diabolical trick. How to evaluate
∫

sec(x) dx =
∫

1
cos(x)

dx?

Integration by parts (e.g. insert a factor of 1, let 1 = g′ and sec(x) = f(x)) leads to∫
x sec(x) tan(x) dx — which doesn’t look like progress.

What about substitution? One natural thought is to get rid of the inverse trig function by
substituting x = arccos(y). This leads to −

∫
y−1
√

1− y2 dy, which is not at all encouraging.
Indeed, as we will learn in a few days, the usual method for calculating integrals involving√

1− y2 is to substitute y = sin(θ), which leads back to
∫

csc(x) dx — which is just as tricky
as
∫

sec(x) dx.

Luckily for us, long ago a very clever person found a solution: Multiply by 1 in the form

1 =
tan(x) + sec(x)

tan(x) + sec(x)

to obtain∫
sec(x) dx =

∫
sec(x)

tan(x) + sec(x)

tan(x) + sec(x)
dx =

∫
tan(x) sec(x) + sec2(x)

tan(x) + sec(x)
dx.

Substitute u = the denominator, that is,

u = tan(x) + sec(x).

Then
du =

(
sec2(x) + tan(x) sec(x)

)
dx

and there’s the numerator! (A miracle?)

The integral becomes∫
du

u
= ln(|u|) + C = ln

∣∣ sec(x) + tan(x)| + C.

Note the presence of the absolute value signs inside the natural logarithm. Nothing in the
problem prevents sec(x) + tan(x) from being negative (it is negative when π

2
< x < π, for

instance), so the absolute value signs are needed.

If you feel a bit frustrated at seeing this problem solved by such a trick, good! In science we
always seek explanations, and while there’s no arguing with the correctness of the reasoning
above, the trick doesn’t seem to explain anything. There is a general method, the Weierstrass
substitution, which handles an enormous number of integrals involving trig functions in a
systematic way, including

∫
sec. See Exercise 59 of §7.4.1

Comment: In the text and worksheets are various reduction formulas. I want you to under-
stand the general method behind their derivation, not to memorize them. You’re unlikely to
succeed in memorizing them all for an exam, so understanding the method is the way to go.

1 That exercise doesn’t explain how Professor Weierstrass invented his substitution, but there’s an expla-
nation for that, too . . .
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Comment: Formula sheets will be provided on exams, so that you can concentrate on learning
methods rather than on memorizing formulas. You’ll be told in advance which formulas will
be provided.

3.
∫

sec3. (Recall that sec3(x) means the same thing as sec(x)3 =
(

sec(x)
)3

.)

Now we’ve learned how to integrate cos2(x) and 1
cos(x)

= cos(x)−1. What about other

powers? Bad news:
∫

sec3(x) dx =
∫

cos(x)−3 dx is still challenging.

The idea is to reduce it to the first power of sec by replacing sec2 by 1 + tan2.∫
sec3(x) dx =

∫
sec(x)(1 + tan2(x)) dx =

∫
sec(x) dx+

∫
tan2(x) sec(x) dx.

The first integral was evaluated above. In the second, write the integrand as tan(x)·tan(x) sec(x)
and integrate by parts, with f(x) = tan(x) and g(x) = sec(x), so that g′(x) = tan(x) sec(x)
and f ′(x) = sec2(x). We get∫

tan(x) · tan(x) sec(x) dx = tan(x) sec(x)−
∫

sec2(x) sec(x) dx.

Putting everything together:∫
sec3(x) dx =

∫
sec(x) dx+ tan(x) sec(x)−

∫
sec3(x) dx.

This is the “circular reasoning” situation which we encountered in Wednesday’s lecture:
Adding

∫
sec3(x) dx to both sides of this equation and dividing by 2 gives∫

sec3(x) dx = 1
2

∫
sec(x) dx+ 1

2
tan(x) sec(x)

= 1
2

ln | sec(x) + tan(x)|+ 1
2

tan(x) sec(x) + C.

4. Even powers of sec. Even powers of sec are easier to integrate than odd powers. The
method is based on the identities

tan2 +1 = sec2 and tan′ = sec2 .

As a representative example, consider
∫

sec6(x) dx. The key is to keep one factor of sec2,
and to express all of the remaining powers in terms of tan2:

sec6(x) = sec4(x) sec2(x) = (1 + τ 2(x))2 sec2(x).

Then ∫
sec6(x) dx =

∫
(tan2(x) + 1)2 sec2(x) dx.
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Substitute u = tan(x). Then du = sec2(x) dx. (That’s why we kept one factor of sec2, rather
than rewriting it in terms of tan2.) We find∫

sec6(x) dx =

∫
(u2 + 1)2 du.

Before finishing the problem, let’s look at this and agree that we have definitely made
progress: All trig functions have disappeared, and all we need to do is to integrate the poly-
nomial (u2 + 1)2 = u4 + 2u2 + 1. So∫

sec6(x) dx =

∫
(u4 + 2u2 + 1) du

= 1
5
u5 + 2

3
u3 + u+ C

= 1
5

tan(x)5 + 2
3

tan(x)3 + tan(x) + C.

Some people prefer to write the answer as

1
5

tan5(x) + 2
3

tan3(x) + tan(x) + C;

same thing.

5 Reduction formulas. This is a slightly more advanced topic, which I don’t expect to get
to in Lecture 1.
Example: For any positive whole number n,∫

sin(x)n dx = − 1
n

cos(x) sin(x)n−1 + n−1
n

∫
sin(x)n−2 dx.

“Reduction formula” is a general term for a formula which expresses a relatively compli-
cated integral in terms of simpler, but possibly still quite complicated, ones, which can be
further simplified by repeated use of the same reduction formula. [Such a process is also called
recursion.]

This formula doesn’t tell us how to integrate a power of sin right out, but it does reduce
the problem to one of the same type, with a lower power. (See also our text, §7.1 Example 6.)

Here is a derivation of this reduction formula, using IBP: Let f(x) = sin(x)n−1 and g′(x) =
sin(x). Then g(x) = − cos(x) and f ′(x) = (n−1) sin(x)n−2 cos(x), by the chain rule. Therefore∫

sin(x)n dx = − cos(x) sin(x)n−1 − (n− 1)

∫
sin(x)n−2 cos(x) · (− cos(x)) dx

= − cos(x) sin(x)n−1 + (n− 1)

∫
sin(x)n−2 cos(x)2 dx.

Now convert the factors of cos to factors of sin by using cos2 = 1− sin2 to get∫
sin(x)n dx = − cos(x) sin(x)n−1 + (n− 1)

∫
sin(x)n−2 dx− (n− 1)

∫
sin(x)n−2 sin(x)2 dx

= − cos(x) sin(x)n−1 + (n− 1)

∫
sin(x)n−2 dx− (n− 1)

∫
sin(x)n dx.
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The integral which we started out with has reappeared, now multiplied by −(n−1). By adding
this quantity to both sides, we find that

n

∫
sin(x)n dx = − cos(x) sin(x)n−1 + (n− 1)

∫
sin(x)n−2 dx.

Dividing by both sides n gives the formula stated. (There’s no need to write “+C” in the
formula, since there’s an implicit arbitrary constant in the integral on the right-hand side.)

Example:
∫

secn(x) dx, where n is a positive whole number. We already know the cases
n = 1, 2, 3. For larger n, use IBP with f = secn−2 and g′ = sec2, so that f ′ = (n−2) secn−2 tan
and g = tan. Thus∫

secn(x) dx = secn−2(x) tan(x)− (n− 2)

∫
secn−2(x) tan2(x) dx

= secn−2(x) tan(x)− (n− 2)

∫
secn−2(x)

(
sec2(x)− 1

)
dx

= secn−2(x) tan(x) + (n− 2)

∫
secn−2(x) dx− (n− 2)

∫
secn(x) dx.

The usual trick of adding (n − 2)
∫

secn(x) dx to both sides and dividing through by (n − 1)
gives ∫

secn(x) dx =
1

n− 1
secn−2(x) tan(x) +

n− 2

n− 1

∫
secn−2(x) dx.

(This formula applies for whole numbers n ≥ 2.)

With application of plenty of elbow grease, an integral like
∫

sec8(x) dx or
∫

sec9(x) dx can
be reduced by this method to either

∫
sec2(x) dx or

∫
sec(x) dx, both of which we already know

how to evaluate.

6 . Integrating tanm secn This is easy if the power m of tan is odd. Write

tanm = tan ·(tan2)(m−1)/2 = tan ·(sec2−1)(m−1)/2.

Expand the power of (sec2−1) to get a sum of integrals, each of the simpler form∫
seck(x) · sec(x) tan(x) dx

for some nonnegative integer k. Now use the substitution u = sec(x), du = sec(x) tan(x) dx to
reduce matters to ∫

uk du = (k + 1)−1uk+1 + C.

A similar method applies if the power n of sec is even. See our text, §7.2.

7. Products of trig functions.
(I will not have time for this topic in class; please read our text.)
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The identity
sin(A) cos(B) = 1

2

(
sin(A−B) + sin(A+B)

)
and its cousins — see end of §7.2 of Stewart. This identity is easy to justify (but harder to
remember exactly): Expand sin(A − B) = sin(A) cos(B) − cos(A) sin(B), expand sin(A + B)
similarly, cancel everything that can be cancelled, and divide by 2.

Example:
∫

sin(3x) cos(5x) dx.

With the formula, such an integral is very easy:∫
sin(3x) cos(5x) dx = 1

2

∫ (
sin(−2x) + sin(8x)) dx

and this is now a routine integral which equals 1
4

cos(2x)− 1
16

cos(8x) + C.
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