Computable structures on a cone

Matthew Harrison-Trainor

University of California, Berkeley

Sets and Computations, Singapore, April 2015

Overview

Setting: \mathcal{A} a computable structure.

Suppose that ${\cal A}$ is a "natural structure".

OR

Consider behaviour on a cone.

What are the possible:

- computable dimensions of A? (McCoy)
 - degrees of categoricity of A? (Csima, H-T)
 - degree spectra of relations on A? (H-T)

Conventions

All of our languages will be computable.

All of our structures will be countable with domain ω .

A structure is computable if its atomic diagram is computable.

Natural structures

What is a "natural structure"?

A "natural structure" is a structure that one would expect to encounter in normal mathematical practice, such as ($\omega,<$), a vector space, or an algebraically closed field.

A "natural structure" is <u>not</u> a structure that has been constructed by a method such as diagonalization to have some computability-theoretic property.

Key observation: Arguments involving natural structures tend to relativize.

Cones and Martin measure

Definition

The cone of Turing degrees above c is the set

$$\mathcal{C}_c = \{d: d \geq c\}.$$

Theorem (Martin 1968, assuming AD)

Every set of Turing degrees either contains a cone, or is disjoint from a cone.

Think of sets containing a cone as "large" or "measure one" and sets not containing a cone as "small" or "measure zero."

Note that the intersection of countably many cones contains another cone.

Relativizing to a cone

Suppose that P is a property that relativizes. We say that property P holds on a cone if it holds relative to all degrees \mathbf{d} on a cone.

Definition

 ${\cal A}$ is **d**-computably categorical if every two **d**-computable copies of ${\cal A}$ are **d**-computably isomorphic.

Definition

 $\mathcal A$ is computably categorical on a cone if there is a cone $\mathcal C_c$ such that $\mathcal A$ is **d**-computably categorical for all $\mathbf d \in \mathcal C_c$.

Theorem (Goncharov 1975, Montalbán 2015)

The following are equivalent:

- (1) A is computably categorical on a cone,
- (2) \mathcal{A} has a Scott family of Σ_1^{in} formulas,
- (3) A has a Σ_3^{in} Scott family.

Proving results about natural structures

Recall that arguments involving natural structures tend to relativize. So a natural structure has some property P if and only if it has property P on a cone.

We can study natural structures by studying all structure relative to a cone. If we prove that all structures have property P on a cone, then natural structures should have property P relative to $\mathbf{0}$.

Computable Dimension

Computable dimension

Definition

 \mathcal{A} has computable dimension $n \in \{1, 2, 3, ...\} \cup \{\omega\}$ if \mathcal{A} has n computable copies up to computable isomorphism.

Theorem (Goncharov 1980)

For each $n \in \{1, 2, 3, ...\} \cup \{\omega\}$ there is a computable structure of computable dimension n.

Computable dimension 1 or ω

Theorem

The following structures have computable dimension 1 or ω :

computable linear orders, [Remmel 81, Dzgoev and Goncharov 80]

 Boolean algebras, [Goncharov 73, Laroche 77, Dzgoev and Goncharov 80]

abelian groups, [Goncharov 80]

 algebraically closed fields, [Nurtazin 74, Metakides and Nerode 79]

vector spaces, [ibid.]

real closed fields. [ibid.]

Archimedean ordered abelian groups [Goncharov, Lempp, Solomon 2000]

differentially closed fields. [H-T, Melnikov, Montalbán 2014]

difference closed fields. [ibid.]

Computable dimension relative to a cone

Definition

The computable dimension of \mathcal{A} relative to \mathbf{d} is the number \mathbf{d} -computable copies of \mathcal{A} up to \mathbf{d} -computable isomorphism.

Definition

The computable dimension of A on a cone is the n such that the computable dimension of A is n for all \mathbf{d} on a cone.

The computable dimension of A on a cone is well-defined.

Theorem on computable dimension

Let A be a computable structure.

Theorem (McCoy 2002)

If for all \mathbf{d} , \mathcal{A} has computable dimension $\leq n \in \omega$, then for all \mathbf{d} , \mathcal{A} has computable dimension one.

Let A be a countable structure.

Corollary

Relative to a cone:

 ${\cal A}$ has computable dimension 1 or ω .

Degrees of Categoricity

Degrees of categoricity

Definition

 ${\cal A}$ is **d**-computably categorical if

 \boldsymbol{d} computes an isomorphism between \mathcal{A} and any computable copy of $\mathcal{A}.$

Definition

 ${\cal A}$ has degree of categoricity **d** if:

- (1) ${\cal A}$ is **d**-computably categorical and
- (2) if A is **e**-computably categorical, then $e \ge d$.

Equivalently: \mathbf{d} is the least degree such that \mathcal{A} is \mathbf{d} -computably categorical.

Example

 $(\mathbb{N}, <)$ has degree of categoricity 0'.

Which degrees are degrees of categoricity?

Theorem (Fokina, Kalimullin, Miller 2010; Csima, Franklin, Shore 2013)

If α is a computable ordinal then $0^{(\alpha)}$ is a degree of categoricity.

If α is a computable successor ordinal and **d** is d.c.e. in and above $0^{(\alpha)}$, then **d** is a degree of categoricity.

Theorem (Anderson, Csima 2014)

- (1) There is a Σ_2^0 degree **d** which is not a degree of categoricity.
- (2) Every non-computable hyperimmune-free degree is not a degree of categoricity.

Question (Fokina, Kalimullin, Miller 2010)

Which degrees are a degree of categoricity?

Strong degrees of categoricity

Definition

 ${f d}$ is a strong degree of categoricity for ${\cal A}$ if

- (1) ${\cal A}$ is **d**-computably categorical and
- (2) there are computable copies \mathcal{A}_1 and \mathcal{A}_2 of \mathcal{A} such every isomorphism $f:\mathcal{A}_1\to\mathcal{A}_2$ computes \mathbf{d} .

Every known example of a degree of categoricity is a strong degree of categoricity.

Question (Fokina, Kalimullin, Miller 2010)

Is every degree of categoricity a strong degree of categoricity?

Relative notions of categoricity

Definition

 $\mathcal A$ is **d**-computably categorical <u>relative to **c**</u> if **d** computes an isomorphism between $\mathcal A$ and any <u>c</u>-computable copy of $\mathcal A$.

Definition

 \mathcal{A} has degree of categoricity **d** <u>relative to **c**</u> if:

- $oldsymbol{2}$ \mathcal{A} is **d**-computably categorical <u>relative to \mathbf{c} </u> and
- lacktriangledown if $\mathcal A$ is $\mathbf e$ -computably categorical relative to $\mathbf c$, then $\mathbf e \geq \mathbf d$.

Equivalently: ${\bf d}$ is the least degree above ${\bf \underline{c}}$ such that ${\cal A}$ is ${\bf d}$ -computably categorical relative to ${\bf c}$.

Theorem on degrees of categoricity

Let A be a countable structure.

Theorem (Csima, H-T 2015)

Relative to a cone:

A has strong degree of categoricity $0^{(\alpha)}$ for some ordinal α .

More precisely:

Theorem (precisely stated)

There is an ordinal α such that for all degrees \mathbf{c} on a cone, \mathcal{A} has strong degree of categoricity $\mathbf{c}^{(\alpha)}$ relative to \mathbf{c} .

 α is the Scott rank of \mathcal{A} :

it is the least α such that \mathcal{A} has a $\Sigma_{\alpha+2}^{in}$ Scott sentence.

Degree Spectra of Relations

Degree spectra

Let \mathcal{A} be a (computable) structure and R an automorphism-invariant relation on \mathcal{A} .

Definition (Harizanov 1987)

The degree spectrum of R is

$$dgSp(R) = \{d(R^{\mathcal{B}}) : \mathcal{B} \text{ is a computable copy of } \mathcal{A}\}$$

Many pathological examples have been constructed:

• $\{0, \mathbf{d}\}$, **d** is Δ_3^0 but not Δ_2^0 degree.

[Harizanov 1991]

• the degrees below a given c.e. degree.

[Hirschfeldt 2001]

• $\{0, \mathbf{d}\}$, **d** is a c.e. degree.

[Hirschfeldt 2001]

Degree spectra of linear orders

For particular relations and structures, degree spectra are often nicely behaved.

Theorem (Mal'cev 1962)

Let R be the relation of linear dependence of n-tuples in an infinite-dimensional \mathbb{Q} -vector space. Then

$$dgSp(R) = c.e. degrees.$$

Theorem (Knoll 2009; Wright 2013)

Let R be a unary relation on $(\omega, <)$. Then

$$dgSp(\omega, R) = \Delta_1^0 \text{ or } dgSp(\omega, R) = \Delta_2^0.$$

Degree spectra of c.e. relations

Theorem (Harizanov 1991)

Suppose that R is computable. Suppose moreover that the property (*) holds of $\mathcal A$ and R. Then

$$dgSp(R) \neq \{\mathbf{0}\} \Rightarrow dgSp(R) \supseteq c.e. degrees.$$

(*) For every \bar{a} , we can computably find $a \in R$ such that for all \bar{b} and quantifier-free formulas $\theta(\bar{z}, x, \bar{y})$ such that $\mathcal{A} \models \theta(\bar{a}, a, \bar{b})$, there are $a' \notin R$ and \bar{b}' such that $\mathcal{A} \models \theta(\bar{a}, a', \bar{b}')$.

On a cone, the effectiveness condition holds.

Degree spectra relative to a cone

Definition

The degree spectrum of R below the degree \mathbf{d} is

$$\mathsf{dgSp}(\mathcal{A},R)_{\leq \mathbf{d}} = \{d(R^{\mathcal{B}}) \oplus \mathbf{d} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \leq_{\mathcal{T}} \mathbf{d}\}$$

Corollary (Harizanov)

One of the following is true for all degrees **d** on a cone:

- ② $dgSp(A, R)_{\leq d}$ ⊇ degrees c.e. in and above **d**.

Relativised degree spectra

For any degree **d**, either:

- (1) $dgSp(A, R)_{\leq \mathbf{d}} = dgSp(B, S)_{\leq \mathbf{d}}$,
- (2) $dgSp(A, R)_{\leq \mathbf{d}} \subsetneq dgSp(B, S)_{\leq \mathbf{d}}$,
- (3) $dgSp(A, R)_{\leq d} \supseteq dgSp(B, S)_{\leq d}$, or
- (4) none of the above.

By Borel determinacy, exactly one of these four options happens on a cone.

Definition (Montalbán)

The degree spectrum of (A, R) on a cone is equal to that of (B, S) if we have equality on a cone, and similarly for containment and incomparability.

Two classes of degrees

Definition

A set A is d.c.e. if it is of the form B - C for some c.e. sets B and C.

A set is n-c.e. if it has a computable approximation which is allowed n alternations.

We omit the definition of α -c.e.

Definition

A set A is CEA in B if A is c.e. in B and $A \ge_T B$.

A is *n*-CEA if there are sets $A_1, A_2, \ldots, A_n = A$ such that A_1 is c.e., A_2 is CEA in A_1 , and so on.

We omit the definition of α -CEA.

Natural classes of degrees

Let Γ be a natural class of degrees which relativises. For example the Δ^0_{α} , Σ^0_{α} , Π^0_{α} , α -c.e., or α -CEA degrees.

For any of these classes Γ of degrees, there is a structure \mathcal{A} and a relation R such that, for each degree \mathbf{d} ,

$$\mathsf{dgSp}_{\leq \boldsymbol{d}}(\mathcal{A},R) = \Gamma(\boldsymbol{d}) \oplus \boldsymbol{d}.$$

So we may talk, for example, about a degree spectrum being equal to the Σ_{α} degrees on a cone.

Main question about degree spectra

Harizanov's result earlier showed that degree spectra on a cone behave nicely with respect to c.e. degrees.

Corollary (Harizanov)

Any degree spectrum on a cone is either equal to Δ_1^0 or contains Σ_1^0 .

Question

What are the possible degree spectra on a cone?

D.c.e. relations

Theorem (H-T 2014)

There is are computable structures A and B with relatively intrinsically d.c.e. relations R and S on A and B respectively with the following property:

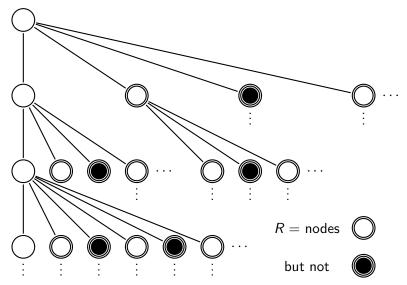
for any degree \mathbf{d} , $\operatorname{dgSp}(A, R)_{\leq \mathbf{d}}$ and $\operatorname{dgSp}(B, S)_{\leq \mathbf{d}}$ are incomparable.

Corollary (H-T 2014)

There are two degree spectra on a cone which are incomparable, each contained within the d.c.e. degrees and containing the c.e. degrees.

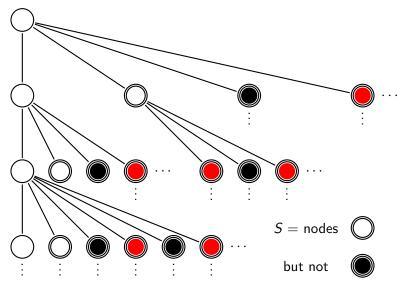
The structure \mathcal{A}

 \mathcal{A} is a tree with a successor relation.



The structure \mathcal{B}

 \mathcal{B} is a tree with a tree-order.



A question of Ash and Knight

Question (Ash, Knight 1997)

(Assuming some effectiveness condition):

Is any relation which is not intrinsically Δ^0_{α} realizes every lpha-CEA degree?

Stated in terms of degree spectra on a cone:

Does any degree spectrum on a cone which is not contained in Δ^0_{α} contain $\alpha\text{-CEA}$?

Ash and Knight [1995] showed that we cannot replace α -CEA with Σ^0_{α} .

A question of Ash and Knight

Ash and Knight gave a result which goes towards answering this question.

Theorem (Ash, Knight 1997)

Let $\mathcal A$ be a computable structure with an additional computable relation R. Suppose that R is not relatively intrinsically Δ^0_{α} .

Moreover, suppose that A is α -friendly and that for all \bar{c} , we can find a $\notin R$ which is α -free over \bar{c} .

Then for any Σ^0_{lpha} set C, there is a computable copy ${\mathcal B}$ of ${\mathcal A}$ such that

$$R^{\mathcal{B}} \oplus \Delta^{0}_{\alpha} \equiv_{\mathcal{T}} C \oplus \Delta^{0}_{\alpha}$$

where Δ_{α}^{0} is a Δ_{α}^{0} -complete set.

The class 2-CEA

For the case of 2-CEA, we can answer this question:

Theorem (H-T 2014)

Let A be a structure and R a relation on A. Then one of the following is true relative to all degrees on a cone:

- 2 2- $CEA \subseteq dgSp(A, R)$.

The picture so far

