Degree Spectra of Relations on a Cone

Matthew Harrison-Trainor

University of California, Berkeley

Vienna, July 2014
Setting: \mathcal{A} a computable structure, and $R \subseteq A^n$ an additional relation on \mathcal{A} not in the signature of \mathcal{A}.

Suppose that \mathcal{A} is a very “nice” structure.

OR

Consider behaviour on a cone.

Which sets of degrees can be the degree spectrum of such a relation?
All of our languages and structures will be countable.

Definition

A structure is computable if its atomic diagram is computable.

Definition

Let \mathcal{A} be a structure and R a relation on \mathcal{A}. R is *invariant* if it is fixed by automorphisms of \mathcal{A}.

If $\mathcal{B} \cong \mathcal{A}$, we obtain a relation R^B on \mathcal{B} using the invariance of R.
Let \mathcal{A} be a computable structure and R a relation on \mathcal{A}.

Definition (Harizanov)

The *degree spectrum* of R is

$$\text{dgSp}(R) = \{ d(R^B) : B \text{ is a computable copy of } \mathcal{A} \}$$

Pathological examples:

- (Hirschfeldt) the degrees below a given c.e. degree.
- (Harizanov) $\{0, d\}$, d is Δ^0_2 but not a c.e. degree.
- (Hirschfeldt) $\{0, d\}$, d is a c.e. degree.
Let \mathcal{A} be a computable structure and R a relation on \mathcal{A}.

Theorem (Harizanov)

Suppose that R is computable. Suppose moreover that the property (\ast) holds of \mathcal{A} and R. Then

$$\text{dgSp}(R) \neq \{0\} \Rightarrow \text{dgSp}(R) \supseteq \text{c.e.}$$

(\ast) For every \bar{a}, we can computably find $a \in R$ such that for all \bar{b} and quantifier-free formulas $\theta(\bar{z}, x, \bar{y})$ such that $\mathcal{A} \models \theta(\bar{a}, a, \bar{b})$, there are $a' \notin R$ and \bar{b}' such that $\mathcal{A} \models \theta(\bar{a}, a', \bar{b}')$.

On a cone, the effectiveness condition holds.
Let \mathcal{A} be a computable structure and R a relation on \mathcal{A}.

Definition

The *degree spectrum of R below the degree d* is

$$\text{dgSp}(\mathcal{A}, R)_{\leq d} = \{ d(R^B) \oplus d : B \cong \mathcal{A} \text{ and } B \leq_T d \}$$

Corollary (Harizanov)

One of the following is true for all degrees d on a cone:

1. $\text{dgSp}(\mathcal{A}, R)_{\leq d} = \{ d \}$, or
2. $\text{dgSp}(\mathcal{A}, R)_{\leq d} \supseteq$ degrees c.e. in and above d.

Let A and B be structures and R and S relations on A and B respectively.

For any degree d, either $\text{dgSp}(A, R)_{\leq d}$ is equal to $\text{dgSp}(B, S)_{\leq d}$, one is strictly contained in the other, or they are incomparable. By Borel determinacy, exactly one of these happens on a cone.

Definition (Montalbán)

The degree spectrum of (A, R) on a cone is equal to that of (B, S) if we have equality on a cone, and similarly for containment and incomparability.
Two classes of degrees

Definition

A set A is d.c.e. if it is of the form $B - C$ for some c.e. sets B and C.

A set is n-c.e. if it has a computable approximation which is allowed n alternations.

We omit the definition of α-c.e.

Definition

A set A is CEA in B if A is c.e. in B and $A \geq_T B$.

A is n-CEA if there are sets $A_1, A_2, \ldots, A_n = A$ such that A_1 is c.e., A_2 is CEA in A_1, and so on.

We omit the definition of α-CEA.
Let Γ be a natural class of degrees which relativises. For example, Γ might be the Δ^0_α, Σ^0_α, or Π^0_α degrees. We will also be interested in the α-c.e. and α-CEA degrees we just defined.

For any of these classes Γ of degrees, there is a structure \mathcal{A} and a relation R such that, for each degree d,

$$dgSp_{\leq d}(\mathcal{A}, R) = \Gamma(d) \oplus d.$$

So we may talk, for example, about a degree spectrum being equal to the Σ_α degrees on a cone.
Harizanov’s result earlier showed that degree spectra on a cone behave nicely with respect to c.e. degrees.

Corollary (Harizanov)

Any degree spectrum on a cone is either equal to Δ^0_1 or contains Σ^0_1.

Question

What are the possible degree spectra on a cone?
Theorem (H.)

There is a computable structure \mathcal{A} and relatively intrinsically d.c.e. relations R and S on \mathcal{A} with the following property:

for any degree d, $\text{dgSp}(\mathcal{A}, R)_{\leq d}$ and $\text{dgSp}(\mathcal{B}, S)_{\leq d}$ are incomparable.

Corollary (H.)

There are two degree spectra on a cone which are incomparable, each contained within the d.c.e. degrees and containing the c.e. degrees.
A question of Ash and Knight

Question (Ash-Knight)

Can one show (assuming some effectiveness condition) that any relation which is not intrinsically Δ^0_α realises every α-CEA degree?

Stated in terms of degree spectra on a cone, is it true that every degree spectrum on a cone is either contained in Δ^0_α, or contains α-CEA?
Ash and Knight gave a result which goes towards answering this question.

Theorem (Ash-Knight)

Let A be a computable structure with an additional computable relation R. Suppose that R is not relatively intrinsically Δ^0_α.

Moreover, suppose that A is α-friendly and that for all \bar{c}, we can find $a \notin R$ which is α-free over \bar{c}.

Then for any Σ^0_α set C, there is a computable copy B of A such that

$$R^B \oplus \Delta^0_\alpha \equiv_T C \oplus \Delta^0_\alpha$$

where Δ^0_α is a Δ^0_α-complete set.
Theorem (H.)

Let \mathcal{A} be a structure and R a relation on \mathcal{A}. Then one of the following is true relative to all degrees on a cone:

1. $\text{dgSp}(\mathcal{A}, R) \subseteq \Delta^0_2$, or
2. $2\text{-CEA} \subseteq \text{dgSp}(\mathcal{A}, R)$.

Matthew Harrison-Trainor

Degree Spectra of Relations on a Cone
Unresolved questions

Question

What about $\alpha > 2$?

Question

Are there more than two degree spectra on a cone which are contained within the d.c.e. degrees but strictly contain the c.e. degrees?

Question

Are degree spectra on a cone closed under join?
Thanks!