Degree Spectra of Relations on a Cone

Matthew Harrison-Trainor

University of California, Berkeley

Vienna, July 2014

Matthew Harrison-Trainor Degree Spectra of Relations on a Cone

Setting: \mathcal{A} a computable structure, and $R \subseteq A^n$ an additional relation on \mathcal{A} not in the signature of \mathcal{A} .

Suppose that \mathcal{A} is a very "nice" structure.

OR

Consider behaviour on a cone.

Which sets of degrees can be the degree spectrum of such a relation?

All of our languages and structures will be countable.

Definition A structure is computable if its atomic diagram is computable.

Definition

Let \mathcal{A} be a structure and R a relation on \mathcal{A} . R is *invariant* if it is fixed by automorphisms of \mathcal{A} .

If $\mathcal{B} \cong \mathcal{A}$, we obtain a relation $\mathcal{R}^{\mathcal{B}}$ on \mathcal{B} using the invariance of \mathcal{R} .

Let A be a computable structure and R a relation on A.

Definition (Harizanov)

The degree spectrum of R is

 $dgSp(R) = \{d(R^{\mathcal{B}}) : \mathcal{B} \text{ is a computable copy of } \mathcal{A}\}$

Pathological examples:

- (Hirschfeldt) the degrees below a given c.e. degree.
- (Harizanov) $\{0, \mathbf{d}\}$, \mathbf{d} is Δ_2^0 but not a c.e. degree.
- (Hirschfeldt) {0, d}, d is a c.e. degree.

Let \mathcal{A} be a computable structure and R a relation on \mathcal{A} .

Theorem (Harizanov)

Suppose that R is computable. Suppose moreover that the property (*) holds of A and R. Then

 $\mathsf{dgSp}(R) \neq \{\mathbf{0}\} \Rightarrow \mathsf{dgSp}(R) \supseteq c.e.$

(*) For every \bar{a} , we can computably find $a \in R$ such that for all \bar{b} and quantifier-free formulas $\theta(\bar{z}, x, \bar{y})$ such that $\mathcal{A} \models \theta(\bar{a}, a, \bar{b})$, there are $a' \notin R$ and \bar{b}' such that $\mathcal{A} \models \theta(\bar{a}, a', \bar{b}')$.

On a cone, the effectiveness condition holds.

Degree spectra relative to a cone

Let \mathcal{A} be a computable structure and R a relation on \mathcal{A} .

Definition

The degree spectrum of R below the degree **d** is

$$\mathsf{dgSp}(\mathcal{A}, R)_{\leq \mathbf{d}} = \{ d(R^{\mathcal{B}}) \oplus \mathbf{d} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \leq_{\mathcal{T}} \mathbf{d} \}$$

Corollary (Harizanov)

One of the following is true for all degrees **d** on a cone:

• dgSp
$$(\mathcal{A}, R)_{\leq \mathbf{d}} = \{\mathbf{d}\}, \text{ or }$$

② dgSp(A, R)_{≤d} ⊇ degrees c.e. in and above **d**.

Let A and B be structures and R and S relations on A and B respectively.

For any degree **d**, either $dgSp(\mathcal{A}, R)_{\leq d}$ is equal to $dgSp(\mathcal{B}, S)_{\leq d}$, one is strictly contained in the other, or they are incomparable. By Borel determinacy, exactly one of these happens on a cone.

Definition (Montalbán)

The degree spectrum of (\mathcal{A}, R) on a cone is equal to that of (\mathcal{B}, S) if we have equality on a cone, and similarly for containment and incomparability.

Definition

A set A is d.c.e. if it is of the form B - C for some c.e. sets B and C.

A set is n-c.e. if it has a computable approximation which is allowed n alternations.

We omit the definition of α -c.e.

Definition

A set A is CEA in B if A is c.e. in B and $A \ge_T B$.

A is *n*-CEA if there are sets $A_1, A_2, \ldots, A_n = A$ such that A_1 is c.e., A_2 is CEA in A_1 , and so on.

We omit the definition of α -CEA.

Let Γ be a natural class of degrees which relativises. For example, Γ might be the Δ^0_{α} , Σ^0_{α} , or Π^0_{α} degrees. We will also be interested in the α -c.e. and α -CEA degrees we just defined.

For any of these classes Γ of degrees, there is a structure A and a relation R such that, for each degree **d**,

$$\mathsf{dgSp}_{\leq \mathbf{d}}(\mathcal{A}, R) = \Gamma(\mathbf{d}) \oplus \mathbf{d}.$$

So we may talk, for example, about a degree spectrum being equal to the Σ_{α} degrees on a cone.

Harizanov's result earlier showed that degree spectra on a cone behave nicely with respect to c.e. degrees.

Corollary (Harizanov)

Any degree spectrum on a cone is either equal to Δ_1^0 or contains $\Sigma_1^0.$

Question

What are the possible degree spectra on a cone?

Theorem (H.)

There is a computable structure A and relatively intrinsically d.c.e. relations R and S on A with the following property:

for any degree **d**, $dgSp(A, R)_{\leq d}$ and $dgSp(B, S)_{\leq d}$ are *incomparable*.

Corollary (H.)

There are two degree spectra on a cone which are incomparable, each contained within the d.c.e. degrees and containing the c.e. degrees.

Question (Ash-Knight)

Can one show (assuming some effectiveness condition) that any relation which is not intrinsically Δ^0_{α} realises every α -CEA degree?

Stated in terms of degree spectra on a cone, is it true that every degree spectrum on a cone is either contained in Δ^0_{α} , or contains α -CEA?

Ash and Knight gave a result which goes towards answering this question.

Theorem (Ash-Knight)

Let \mathcal{A} be a computable structure with an additional computable relation R. Suppose that R is not relatively intrinsically Δ_{α}^{0} .

Moreover, suppose that A is α -friendly and that for all \bar{c} , we can find a $\notin R$ which is α -free over \bar{c} .

Then for any Σ^0_{α} set C, there is a computable copy $\mathcal B$ of $\mathcal A$ such that

$$R^{\mathcal{B}} \oplus \Delta^{0}_{\alpha} \equiv_{\mathcal{T}} C \oplus \Delta^{0}_{\alpha}$$

where Δ^0_{α} is a Δ^0_{α} -complete set.

Theorem (H.)

Let A be a structure and R a relation on A. Then one of the following is true relative to all degrees on a cone:

• dgSp
$$(\mathcal{A}, R) \subseteq \Delta_2^0$$
, or

2-CEA
$$\subseteq$$
 dgSp(\mathcal{A}, R).

Question

What about $\alpha > 2$?

Question

Are there more than two degree spectra on a cone which are contained within the d.c.e. degrees but strictly contain the c.e. degrees?

Question

Are degree spectra on a cone closed under join?

Thanks!

Matthew Harrison-Trainor Degree Spectra of Relations on a Cone