Independence in Computable Algebra

Matthew Harrison-Trainor

University of California, Berkeley

Hamilton, December 2014

Joint work with Alexander Melnikov and Antonio Montalbán.

The standard computable presentation of the infinite dimensional \mathbb{Q} -vector-space has a computable basis. In the 1960's Mal'cev noticed that there is another computable presentation with no computable basis.

Many other algebraic structures have a notion of "independence" generalizing linear independence in vector spaces and algebraic independence in fields.

A *pregeometry* is a natural formalization of an independence relation. There is a corresponding notion of *basis*.

Example One: Torsion-free Abelian Groups

Consider \mathbb{Z} -linear independence on abelian groups.

Theorem (Nurtazin 1974, Dobrica 1983)

Let \mathcal{M} be a computable torsion-free abelian group of infinite dimension.

- **1** There is a computable copy \mathcal{G} with a computable \mathbb{Z} -basis.
- **2** There is a computable copy \mathcal{B} with no computable \mathbb{Z} -basis.
- **(a)** \mathcal{G} and \mathcal{B} are Δ_2^0 -isomorphic.

Corollary (Goncharov 1982)

Let \mathcal{M} and \mathcal{N} be computable structures which are Δ_2^0 -isomorphic but not computably isomorphic. Then they have infinitely many computable copies up to computable isomorphism.

We say that \mathcal{M} has computable dimension ω .

Theorem (Goncharov, Lempp, Solomon 2003)

Let \mathcal{M} be a computable archimedean ordered abelian group of infinite dimension.

- **1** There is a computable copy \mathcal{G} with a computable \mathbb{Z} -basis.
- **2** There is a computable copy \mathcal{B} with no computable \mathbb{Z} -basis.
- **3** \mathcal{G} and \mathcal{B} are Δ_2^0 -isomorphic.
- \mathcal{M} has computable dimension ω .

Let \mathcal{K} be a class of computable algebraic structures.

Main Question

Does every structure in \mathcal{K} have:

- a computable copy with a computable basis?
- a computable copy with no computable basis?

Let ${\mathcal K}$ be a class of computable algebraic structures.

Definition

 ${\cal K}$ has the $\it Mal'cev\ property$ if each member ${\cal M}$ of ${\cal K}$ of infinite dimension has

- \bullet a computable presentation ${\mathcal G}$ with a computable basis
- \bullet a computable presentation ${\cal B}$ with no computable basis

•
$$\mathcal{B} \cong_{\Delta^0_2} \mathcal{G}$$

Main Results

We give sufficient conditions for a class to have the Mal'cev property, and use them in new applications.

Definition

Let X be a set and cl : $\mathcal{P}(X) \to \mathcal{P}(X)$ a function on $\mathcal{P}(X)$. We say that cl is a *pregeometry* if:

•
$$A \subseteq cl(A)$$
 and $cl(cl(A)) = cl(A)$,

$$a \subseteq B \Rightarrow \mathsf{cl}(A) \subseteq \mathsf{cl}(B),$$

(finite character)

$$\mathsf{cl}(A) = \bigcup_{\substack{B \text{ finite} \\ B \subseteq A}} \mathsf{cl}(B),$$

 (exchange principle) if a ∈ cl(A ∪ {b}) and a ∉ cl(A), then b ∈ cl(A ∪ {a}). Let (X, cl) be a pregeometry, and $A \subseteq X$.

Definition

 $A \subseteq X$ is independent if for all $a \in A$, $a \notin cl(A \setminus \{a\})$, and A is dependent otherwise.

B is a *basis* for X if B is independent and X = cl(B). Equivalently, B is a basis for X if and only if B is a maximal independent set.

X has a basis. Every basis is the same size, the *dimension* of X.

Definition

A pregeometry cl on a structure ${\cal M}$ is relatively intrinsically computably enumerable (r.i.c.e.) if the relations

$$x \in \mathsf{cl}(y_1,\ldots,y_n)$$

are uniformly computably $\boldsymbol{\Sigma}_1$ definable.

Proposition

Let (\mathcal{M}, cl) be a r.i.c.e. pregeometry.

 (\mathcal{M}, cl) has a computable basis $\Leftrightarrow cl$ is computable.

Computable pregeometries have been studied by Metakides, Nerode, Downey, and Remmel.

Construction of a "nice" copy.

We have: a computable structure ${\mathcal M}$ with a r.i.c.e. pregeometry.

We want: $\mathcal{G} \cong_{\Delta_{2}^{0}} \mathcal{M}$ such that \mathcal{G} has a computable basis.

Condition G

Definition

The independence diagram of \bar{c} in \mathcal{M} is:

 $\mathcal{I}_{\mathcal{M}}(ar{c}) = \{ arphi(ar{c},ar{x}) \text{ an existential formula : }$

 $\exists \bar{u} \text{ independent over } \bar{c} \text{ with } \mathcal{M} \models \varphi(\bar{c}, \bar{u}) \}$

Definition

Independent tuples in \mathcal{M} are *locally indistinguishable* if for all $\varphi \in \mathcal{I}_{\mathcal{M}}(\bar{c})$ and \bar{u} independent over \bar{c} , there is a tuple \bar{v} with:

- \bar{v} is independent over \bar{c} ,
- $\mathcal{M} \models \varphi(\bar{c}, \bar{v})$, and
- $v_i \in cl(\bar{c}, u_1, \ldots, u_i).$

Condition G: Independent tuples are locally indistinguishable in \mathcal{M} and for each \mathcal{M} -tuple \bar{c} , $\mathcal{I}_{\mathcal{M}}(\bar{c})$ is c.e. uniformly in \bar{c} .

Condition G: Independent tuples are locally indistinguishable in \mathcal{M} and for each \mathcal{M} -tuple \bar{c} , $\mathcal{I}_{\mathcal{M}}(\bar{c})$ is c.e. uniformly in \bar{c} .

Theorem (H-T, Melnikov, Montalbán)

Let \mathcal{M} be a computable structure, and let cl be a r.i.c.e. pregeometry on \mathcal{M} .

 (\mathcal{M}, cl) has Condition G

∜

there is $\mathcal{G}\cong_{\Delta^0_2}\mathcal{M}$ with a computable basis.

Construction of a "bad" copy.

We have: a computable structure \mathcal{M} with a r.i.c.e. pregeometry. We want: $\mathcal{B} \cong_{\Delta^0_s} \mathcal{M}$ such that \mathcal{B} has no computable basis.

Definition

We say that *dependent elements are dense in* \mathcal{M} if whenever $\psi(\bar{c}, x)$ is a satisfiable existential formula, there is $b \in cl(\bar{c})$ with $\mathcal{M} \models \psi(\bar{c}, b)$.

Technical note: we can assume that \bar{c} always contains an independent element or two.

Condition B: Dependent elements are dense in \mathcal{M} .

Condition B: Dependent elements are dense in \mathcal{M} .

Theorem (H-T, Melnikov, Montalbán)

Let \mathcal{M} be a computable structure, and let cl be a r.i.c.e. pregeometry upon \mathcal{M} . Suppose that the cl-dimension of \mathcal{M} is infinite.

$$(\mathcal{M}, cl)$$
 has Condition B

∜

there is $\mathcal{B} \cong_{\Delta_2^0} \mathcal{M}$ with no computable basis.

Theorem (H-T, Melnikov, Montalbán)

Let \mathcal{K} be a class of computable structures with r.i.c.e. pregeometries.

Structures in $\mathcal K$ have Condition G and Condition B

₩

 \mathcal{K} has the Mal'cev property.

Applications.

We get the same results as before, but with nicer proofs which separate the algebra and combinatorics from the computability.

Recall that the following structures have the Mal'cev property:

- vector spaces over an infinite field with linear independence [Mal'cev]
- algebraically closed fields with algebraic independence [Folklore]
- torsion-free abelian groups with Z-linear independence [Nurtazin, Dobrica]
- archimedean ordered abelian groups with Z-linear independence [Goncharov, Lempp, Solomon]

We also have some new applications:

Theorem (H-T, Melnikov, Montalbán)

The following classes of structures have the Mal'cev property:

- real closed fields with algebraic independence (uses decidability of RCF, cell decomposition / definable Skolem functions)
- differentially closed fields with δ-independence (uses decidability of DCF₀, quantifier elimination, uniqueness of independent type)
- difference closed fields with transformal independence (uses decidability of ACFA, model completeness, uniqueness of independent type)

Thanks!

Matthew Harrison-Trainor Independence in Computable Algebra