Borel Functors and Infinitary Interpretations

Matthew Harrison-Trainor
University of California, Berkeley

Computability in Europe, Paris, June 2016

An interesting question

Let \mathcal{F} and \mathcal{G} be two structures.
Suppose that \mathcal{F} and \mathcal{G} have the same automorphism group:

$$
\operatorname{Aut}(\mathcal{F}) \cong \operatorname{Aut}(\mathcal{G})
$$

How are \mathcal{F} and \mathcal{G} related?
The answer lies in infinitary interpretations and Borel functors.

I will talk about work from two papers:

- With R. Miller and Montalbán:

Borel functors and infinitary interpretations

- With Melnikov, R. Miller, and Montalbán:

Computable functors and effective interpretations

Infinitary logic

All of our structures will be countable structures with domain ω.
We will use the infinitary logic $\mathcal{L}_{\omega_{1} \omega}$ which allows countable conjunctions and disjunctions.

Infinitary interpretations

Let $\mathcal{A}=\left(A ; P_{0}^{\mathcal{A}}, P_{1}^{\mathcal{A}}, \ldots\right)$ where $P_{i}^{\mathcal{A}} \subseteq A^{a(i)}$.

Definition

\mathcal{A} is infinitary interpretable in \mathcal{B} if there exists a sequence of $\mathcal{L}_{\omega_{1} \omega}$-definable relations $\left(\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}}, \sim, R_{0}, R_{1}, \ldots\right)$ such that
(1) $\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}} \subseteq \mathcal{B}^{<\omega}$,
(2) \sim is an equivalence relation on $\mathcal{D} \circ m_{\mathcal{A}}^{\mathcal{B}}$,
(3) $R_{i} \subseteq\left(B^{<\omega}\right)^{a(i)}$ is closed under \sim within $\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}}$,
and a function $f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D o m} \boldsymbol{\mathcal { A }}_{\mathcal{B}}^{\mathcal{B}} \rightarrow \mathcal{A}$ which induces an isomorphism:

$$
\left(\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}} / \sim ; R_{0} / \sim, R_{1} / \sim, \ldots\right) \cong\left(A ; P_{0}^{\mathcal{A}}, P_{1}^{\mathcal{A}}, \ldots\right) .
$$

Some examples

Example

If $(R, 0,1,+, \cdot)$ is an integral domain, the fraction field and polynomial ring of R are interpretable in R.

The domain of the fraction field F is $R \times R-\{0\}$ modulo the equivalence relation

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b c
$$

Addition on the fraction field is defined by

$$
(a, b)+(c, d)=(a d+c b, b d)
$$

Multiplication on the fraction field is defined by

$$
(a, b) \cdot(c, d)=(a c, b d)
$$

Borel functors

Let R be an integral domain with fraction field F.
If S is an isomorphic copy of R, we can use the same construction to build its fraction field G viewing the domain as $S \times S-\{0\}$ (modulo an equivalence relation).

Obviously G is an isomorphic copy of F.
So the fraction field construction yields a way of turning copies of R into copies of its fraction field.

We view this as a functor on the following category:

Definition

Iso (\mathcal{A}) is the category of copies of \mathcal{A} with domain ω. The morphisms are isomorphisms between copies of \mathcal{A}.

Borel functors

Recall: a functor F from $\operatorname{Iso}(\mathcal{A})$ to $\operatorname{Iso}(\mathcal{B})$
(1) assigns to each copy $\widehat{\mathcal{A}}$ in $\operatorname{Iso}(A)$ a structure $F(\widehat{\mathcal{A}})$ in Iso (\mathcal{B}),
(2) assigns to each isomorphism $f: \widehat{\mathcal{A}} \rightarrow \widetilde{\mathcal{A}}$ in $\operatorname{Iso}(\mathcal{A})$ an isomorphism

$$
F(f): F(\widehat{\mathcal{A}}) \rightarrow F(\widetilde{\mathcal{A}}) \text { in } \operatorname{Iso}(\mathcal{B})
$$

It satisfies $F(f \circ g)=F(f) \circ F(g)$.

Definition

F is Borel if there are Borel operators Φ and Φ_{*}
such that
(1) for every $\widehat{\mathcal{A}} \in \operatorname{Iso}(\mathcal{A}), \Phi^{D(\widehat{\mathcal{A}})}$ is the atomic diagram of $F(\mathcal{A})$,
(2) for every isomorphism $f: \widehat{\mathcal{A}} \rightarrow \widetilde{\mathcal{A}}, F(f)=\Phi_{*}^{D(\widehat{\mathcal{A}}) \oplus f \oplus D(\widetilde{\mathcal{A}})}$.

Automorphism groups

Back to the example:
Let R be an integral domain with fraction field F.
Let φ be an automorphism of R.
Then we get an automorphism φ_{*} on F :

$$
\varphi_{*}(a, b)=\left(\varphi_{*}(a), \varphi_{*}(b)\right)
$$

In fact, $\varphi \mapsto \varphi_{*}$ is a homomorphism $\operatorname{Aut}(R) \rightarrow \operatorname{Aut}(F)$.

Automorphism groups as Polish groups

Given a structure \mathcal{A}, we can view $\operatorname{Aut}(\mathcal{A})$ as subgroup of S_{∞}, the permutations of ω.
This is a topological group (in fact a Polish group).

Some facts:
(1) Every Baire-measureable homomorphism of Polish groups is continuous.
(2) An isomorphism of Polish groups is continuous if and only if it is an isomorphism of topological groups.
(3) There is a model of $Z F+D C$ where all homomorphisms of Polish groups are continuous. (Solovay, Shelah)
(9) In ZFC there are automorphism groups which are isomorphic but not isomorphic as topological groups. (Evans, Hewitt)

The first main theorem

Theorem (H-T., Miller, Montalbán)
\mathcal{A} is infinitary interpretable in \mathcal{B}
\downarrow
there is a Borel functor F from \mathcal{B} to \mathcal{A}.
§
there is a continuous homomorphism from $\operatorname{Aut}(\mathcal{B})$ to $\operatorname{Aut}(\mathcal{A})$.
The complexities of the formulas used in the interpretation correspond to the level in the Borel hierarchy.

The effective version of this theorem:
Theorem (H-T., Melnikov, Miller, Montalbán)
\mathcal{A} is effectively $\left(\Sigma_{1}^{c}\right)$ interpretable in \mathcal{B} \downarrow
there is a computable functor F from \mathcal{B} to \mathcal{A}.

Which interpretation?

Given a functor, we get an interpretation.
From that interpretation, we get back a functor.
Are these functors the same?

Yes:
Theorem (H-T., Miller, Montalbán)
Given a Borel functor F from \mathcal{B} to \mathcal{A}, there is an infinitary interpretation \mathcal{I} of \mathcal{A} in \mathcal{B} such that the functor $F_{\mathcal{I}}$ induced by \mathcal{I} is isomorphic to F.

What does isomorphic mean?

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

$$
\widetilde{\mathcal{A}}
$$

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

$$
F(\widetilde{\mathcal{A}})
$$

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

Isomorphisms of functors

Let $F, G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})$ be computable functors.

Definition

F is Borel isomorphic to G if there is a Borel operator Λ such that for any $\widetilde{\mathcal{B}} \in \operatorname{Iso}(\mathcal{B}), \Lambda(\widetilde{\mathcal{B}})$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

Bi-interpretations

Definition

\mathcal{A} and \mathcal{B} are infinitary bi-interpretable if there are infinitary interpretations of each in the other, so that

$$
f_{\mathcal{A}}^{\mathcal{B}} \circ f_{\mathcal{B}}^{\mathcal{A}}: \mathcal{D} \circ m_{\mathcal{A}}^{\left(\mathcal{D} \circ m_{\mathcal{B}}^{\mathcal{A}}\right)} \rightarrow \mathcal{A} \text { and } f_{\mathcal{B}}^{\mathcal{A}} \circ f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D} \circ m_{\mathcal{B}}^{\left(\mathcal{D} \circ m_{\mathcal{A}}^{\mathcal{B}}\right)} \rightarrow \mathcal{B}
$$

are $\mathcal{L}_{\omega_{1} \omega}$-definable.

$$
\begin{gathered}
\mathcal{B} \\
\mathcal{A} \longleftarrow f_{\mathcal{A}}^{\mathcal{B}} \\
\text { U } \circ m_{\mathcal{A}}^{\mathcal{B}}
\end{gathered}
$$

Bi-interpretations

Definition

\mathcal{A} and \mathcal{B} are infinitary bi-interpretable if there are infinitary interpretations of each in the other, so that

$$
f_{\mathcal{A}}^{\mathcal{B}} \circ f_{\mathcal{B}}^{\mathcal{A}}: \mathcal{D} \circ m_{\mathcal{A}}^{\left(\mathcal{D} \circ m_{\mathcal{B}}^{\mathcal{A}}\right)} \rightarrow \mathcal{A} \text { and } f_{\mathcal{B}}^{\mathcal{A}} \circ f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D} \circ m_{\mathcal{B}}^{\left(\mathcal{D} \circ m_{\mathcal{A}}^{\mathcal{B}}\right)} \rightarrow \mathcal{B}
$$

are $\mathcal{L}_{\omega_{1} \omega}$-definable.

$$
\begin{gathered}
\mathcal{B} \\
\mathcal{A} \stackrel{f_{\mathcal{A}}^{\mathcal{B}}}{ } \mathrm{Dom}_{\mathcal{A}}^{\mathcal{B}} \\
\mathcal{B} \longleftarrow{ }^{f_{\mathcal{B}}^{\mathcal{A}}} \mathcal{D o m}_{\mathcal{B}}^{\mathcal{A}}
\end{gathered}
$$

Bi-interpretations

Definition

\mathcal{A} and \mathcal{B} are infinitary bi-interpretable if there are infinitary interpretations of each in the other, so that

$$
f_{\mathcal{A}}^{\mathcal{B}} \circ f_{\mathcal{B}}^{\mathcal{A}}: \mathcal{D} \circ m_{\mathcal{A}}^{\left(\mathcal{D} \circ m_{\mathcal{B}}^{\mathcal{A}}\right)} \rightarrow \mathcal{A} \text { and } f_{\mathcal{B}}^{\mathcal{A}} \circ f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D} \circ m_{\mathcal{B}}^{\left(\mathcal{D} \circ m_{\mathcal{A}}^{\mathcal{B}}\right)} \rightarrow \mathcal{B}
$$

are $\mathcal{L}_{\omega_{1} \omega}$-definable.

$$
\begin{aligned}
& \mathcal{B} \\
& \text { uI } \\
& \mathcal{A} \longleftarrow f_{\mathcal{A}}^{\mathcal{B}} \mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}} \\
& \text { UI UI } \\
& \mathcal{B} \longleftarrow{ }^{f_{\mathcal{B}}^{\mathcal{A}}} \mathcal{D} o m_{\mathcal{B}}^{\mathcal{A}} \longleftarrow{ }^{f_{\mathcal{A}}^{\mathcal{B}}} \mathcal{D} o m_{\mathcal{B}}^{\left(\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}}\right)}
\end{aligned}
$$

Bi-interpretations

Definition

\mathcal{A} and \mathcal{B} are infinitary bi-interpretable if there are infinitary interpretations of each in the other, so that

$$
f_{\mathcal{A}}^{\mathcal{B}} \circ f_{\mathcal{B}}^{\mathcal{A}}: \mathcal{D} \circ m_{\mathcal{A}}^{\left(\mathcal{D} \circ m_{\mathcal{B}}^{\mathcal{A}}\right)} \rightarrow \mathcal{A} \text { and } f_{\mathcal{B}}^{\mathcal{A}} \circ f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D} \circ m_{\mathcal{B}}^{\left(\mathcal{D} \circ m_{\mathcal{A}}^{\mathcal{B}}\right)} \rightarrow \mathcal{B}
$$

are $\mathcal{L}_{\omega_{1} \omega}$-definable.

$$
\begin{aligned}
& \mathcal{B} \\
& \text { uI } \\
& \mathcal{A} \longleftarrow{ }_{f_{\mathcal{A}}^{\mathcal{B}}}^{\longleftarrow} \mathcal{D} \circ m_{\mathcal{A}}^{\mathcal{B}} \\
& \text { UI UI } \\
& \mathcal{B} \underset{\nwarrow}{\stackrel{f_{\mathcal{B}}^{\mathcal{A}}}{\mathcal{A}}} \operatorname{Dom}_{\mathcal{B}}^{\mathcal{A}} \longleftarrow{ }^{f_{\mathcal{A}}^{\mathcal{B}}} \mathcal{D} o m_{\mathcal{B}}^{\left(\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}}\right)}
\end{aligned}
$$

Adjoint equivalences of categories

Definition

An adjoint equivalence of categories between $\operatorname{Iso}(\mathcal{A})$ and $\operatorname{Iso}(\mathcal{B})$ consists of functors

$$
F: \operatorname{Iso}(\mathcal{A}) \rightarrow \operatorname{Iso}(\mathcal{B}) \text { and } G: \operatorname{Iso}(\mathcal{B}) \rightarrow \operatorname{Iso}(\mathcal{A})
$$

such that $F \circ G$ and $G \circ F$ are isomorphic to the identity (plus an extra condition on the isomorphisms).

The second main theorem

Theorem (H-T., Miller, Montalbán)

\mathcal{A} and \mathcal{B} are infinitary bi-interpretable \downarrow
there is a Borel adjoint equivalence of categories between \mathcal{A} and \mathcal{B} \Uparrow
there is a continuous isomorphism between $\operatorname{Aut}(\mathcal{A})$ and $\operatorname{Aut}(\mathcal{B})$.

An application

Let \mathcal{A} be a countable structure.

Theorem (H-T., Miller, Montalbán)

The following are equivalent:
(1) There is a continuous isomorphism between $\operatorname{Aut}(\mathcal{A})$ and S_{∞}.
(2) There is an $\mathcal{L}_{\omega_{1} \omega}$-definable $D \subset A^{n}$ and a $\mathcal{L}_{\omega_{1} \omega}$-definable equivalence relation $E \subset D^{2}$ with infinitely many equivalence classes, such that the E-equivalence classes are absolutely indiscernible and every other element is definable from this set.

Thanks!

