Scott Ranks of Models of a Theory

Matthew Harrison-Trainor

University of California, Berkeley

ASL North American Meeting, Storrs, May 2016

$\mathcal{L}_{\omega_1\omega}$ theories

 $\mathcal{L}_{\omega_1\omega}$ is the infinitary logic which allows countable conjunctions and disjunctions. By a "theory" we mean a sentence of $\mathcal{L}_{\omega_1\omega}$.

Many well-known classes of structures have Π_2 axiomatizations.

Example

There is a Π_2^c formula which describes the class of torsion groups. It consists of the group axioms together with:

$$(\forall x) \bigvee_{n \in \mathbb{N}} nx = 0.$$

Given a theory, what are the Scott ranks of its countable models?

Scott rank

Theorem (Scott)

Let $\mathcal A$ be a countable structure. There is an $\mathcal L_{\omega_1\omega}$ -sentence φ such that:

$$\mathcal{B}$$
 countable, $\mathcal{B} \vDash \varphi \iff \mathcal{B} \cong \mathcal{A}$.

 φ is a *Scott sentence* of \mathcal{A} .

Definition (Scott rank)

SR(A) is the least ordinal α such that A has a $\Pi_{\alpha+1}^{in}$ Scott sentence.

Theorem (Montalbán)

Let A be a countable structure, and α a countable ordinal. TFAE:

- \mathcal{A} has a $\Pi_{\alpha+1}^{\text{in}}$ Scott sentence.
- Every automorphism orbit in $\mathcal A$ is $\Sigma_{\alpha}^{\mathtt{in}}$ -definable without parameters.
- A is uniformly (boldface) Δ_{α}^{0} -categorical without parameters.

Scott spectra

Let T be an $\mathcal{L}_{\omega_1\omega}$ -sentence.

Definition

The Scott spectrum of T is the set

 $SS(T) = \{ \alpha \in \omega_1 \mid \alpha \text{ is the Scott rank of a countable model of } T \}.$

Main Question

What can we say about SS(T)?

Classifying the Scott spectra

Question

What are the possible Scott spectra of theories?

Definition

Let L be a linear order.

- wfp(L) is the well-founded part of L.
- \bullet wfc(L) is L with the non-well-founded part collapsed to a single element.

If $\mathcal C$ is a class of linear orders, we can apply to operations to each member of $\mathcal C$ to get $\mathsf{wfp}(\mathcal C)$ and $\mathsf{wfc}(\mathcal C)$.

Example

- $\bullet \ \mathsf{wfp}(\omega_1^{\mathit{CK}}(1+\mathbb{Q})) = \omega_1^{\mathit{CK}}$
- wfc($\omega_1^{CK}(1+\mathbb{Q})$) = $\omega_1^{CK}+1$

Classifying the Scott spectra

Theorem (ZFC + PD)

The Scott spectra of $\mathcal{L}_{\omega_1\omega}$ -sentences are exactly the sets of the form:

- lacktriangledown wfp(\mathcal{C}),
- $ext{@}$ wfc(\mathcal{C}), or

where C is a Σ_1^1 class of linear orders.

Example

The admissible ordinals are a Scott spectrum.

Low-quantifier-rank theories with no simple models

Let T be a Π_2^{in} sentence.

Question (Montalbán)

Must T have a model of Scott rank two or less?

Theorem

Fix $\alpha < \omega_1$. There is a Π_2^{in} sentence T whose models all have Scott rank α .

In fact:

Theorem (ZFC + PD)

Every Scott spectrum is the Scott spectrum of a Π_2^{in} theory.

Scott height of $\mathcal{L}_{\omega_1\omega}$

Definition (Scott heights)

 $\operatorname{sh}(\mathcal{L}_{\omega_1,\omega})$ is the least countable ordinal α such that, for all computable $\mathcal{L}_{\omega_1\omega}$ -sentences \mathcal{T} :

T has a model of Scott rank α

T has models of arbitrarily high Scott ranks.

Question (Sacks)

What is $sh(\mathcal{L}_{\omega_1,\omega})$?

Theorem

 $\operatorname{sh}(\mathcal{L}_{\omega_1,\omega})=\delta_2^1$, the least ordinal which has no Δ_2^1 presentation.

Computable structures of high Scott rank

Theorem (Nadel)

A computable structure has Scott rank $\leq \omega_1^{CK} + 1$.

Theorem (Harrison)

There is a computable linear order of order type $\omega_1^{CK} \cdot (1 + \mathbb{Q})$ with Scott rank $\omega_1^{CK} + 1$.

Theorem (Makkai, Knight, Millar)

There is a computable structure of Scott rank ω_1^{CK} .

A computable structure has high Scott rank if it has Scott rank ω_1^{CK} or $\omega_1^{CK}+1$.

High Scott rank and definability of orbits

Let A be a computable structure.

 $SR(\mathcal{A}) < \omega_1^{CK}$ if for some computable ordinal α each automorphism orbit is definable by a Σ_{α}^{c} formula.

 $SR(\mathcal{A}) = \omega_1^{CK}$ if each automorphism orbit is definable by a Σ_{α}^{c} formula for some α , but there is no computable bound on the ordinal α required.

 $SR(\mathcal{A}) = \omega_1^{CK} + 1$ if there is an automorphism orbit which is not defined by a computable formula.

Approximations of structures

Let A be a computable structure of high Scott rank.

Definition

 $\mathcal A$ is (strongly) computably approximable if every computable infinitary sentence φ true in $\mathcal A$ is also true in some computable $\mathcal B \not\cong \mathcal A$ with $SR(\mathcal B) < \omega_1^{CK}$.

Question (Calvert and Knight)

Is every computable model of high Scott rank computably approximable?

Theorem

No: There is a computable model ${\cal A}$ of Scott rank $\omega_1^{\rm CK}$ + 1 and a $\Pi_2^{\rm c}$ sentence ψ such that:

- $\mathcal{A} \vDash \psi$
- $\mathcal{B} \models \psi \Longrightarrow SR(\mathcal{B}) = \omega_1^{CK} + 1$.

Atomic models

Question (Millar, Sacks)

Is there a computable structure of Scott rank ω_1^{CK} whose computable infinitary theory is not \aleph_0 -categorical?

Theorem (Millar, Sacks)

There is a structure A of Scott rank ω_1^{CK} whose computable infinitary theory is not \aleph_0 -categorical.

 ${\mathcal A}$ is not computable, but $\omega_1^{\mathcal A}=\omega_1^{\mathsf{CK}}$. (${\mathcal A}$ lives in a fattening of $\mathsf{L}_{\omega_1^{\mathsf{CK}}}$.)

Theorem (H., Igusa, Knight)

There is a computable structure of Scott rank ω_1^{CK} whose computable infinitary theory is not \aleph_0 -categorical.

Open questions

Question

Classify the Scott spectra of $\mathcal{L}_{\omega_1\omega}$ -sentences in ZFC.

Question

Classify the Scott spectra of computable $\mathcal{L}_{\omega_1\omega}$ -sentences.

Question

Classify the Scott spectra of first-order theories.

Thanks!