Computable Functors and Effective Interpretability

Matthew Harrison-Trainor

Joint work with Alexander Melnikov, Russell Miller, and Antonio Montalbán

University of California, Berkeley

Georgetown, March 2015

The main theorem (stated roughly)

All structures are countable with domain ω .

Throughout, \mathcal{A} and \mathcal{B} will be structures.

Theorem

There is a correspondence between "effective interpretations" and "computable functors".

Example

Let \mathcal{A} be the equivalence structure with one equivalence class of size n for each n.

Let \mathcal{B} be the graph which consists of a cycle of size n for each n.

 ${\cal A}$ is effectively interpretable in ${\cal B}$ (in fact, they are bi-interpretable).

Computability	Syntactic
Muchnik reducibility	
Medvedev reducibility	
Computable functor	Σ -reducibility/effective interpretations

A *relation* on \mathcal{A} is a subset of $\mathcal{A}^{<\omega}$ (not \mathcal{A}^n for some *n*).

For example this allows us to code subsets of $\mathcal{A}^{<\omega} \times \omega$ as subsets of $\mathcal{A}^{<\omega}$ in an effective way using the length of tuples.

Many results which were originally proven for subsets of \mathcal{A}^n still hold for subsets of $\mathcal{A}^{<\omega}$.

Let *R* be a relation on $\mathcal{A}^{<\omega}$.

Definition

R is uniformly relatively intrinsically computably enumerable (u.r.i.c.e.) if there is a c.e. operator W such that for every copy $(\mathcal{B}, \mathcal{R}^{\mathcal{B}})$ of $(\mathcal{A}, \mathcal{R})$, $\mathcal{R}^{\mathcal{B}} = W^{D(\mathcal{B})}$.

R is uniformly relatively intrinsically computable (u.r.i. computable) if there is a computable operator Ψ such that for every copy $(\mathcal{B}, \mathcal{R}^{\mathcal{B}})$ of $(\mathcal{A}, \mathcal{R})$, $\mathcal{R}^{\mathcal{B}} = \Psi^{D(\mathcal{B})}$.

Recall:

Theorem (Ash-Knight-Manasse-Slaman,Chisholm)

R is u.r.i.c.e. if and only if it is definable by a Σ_1^c formula without parameters.

Let
$$\mathcal{A} = (A; P_0^{\mathcal{A}}, P_1^{\mathcal{A}}, ...)$$
 where $P_i^{\mathcal{A}} \subseteq A^{a(i)}$.

 $\mathcal{A} \text{ is effectively interpretable in } \mathcal{B} \text{ if there exist a u.r.i. computable} \\ \text{sequence of relations } (\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}, \sim, R_0, R_1, ...) \text{ such that} \\ (1) \ \mathcal{D}om_{\mathcal{A}}^{\mathcal{B}} \subseteq \mathcal{B}^{<\omega}, \\ (2) \ \sim \text{ is an equivalence relation on } \mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}, \\ (3) \ R_i \subseteq (\mathcal{B}^{<\omega})^{a(i)} \text{ is closed under } \sim \text{ within } \mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}, \\ \text{and a function } f_{\mathcal{A}}^{\mathcal{B}} : \mathcal{D}om_{\mathcal{A}}^{\mathcal{B}} \to \mathcal{A} \text{ which induces an isomorphism:} \\ (\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}/\sim; R_0/\sim, R_1/\sim, ...) \cong (\mathcal{A}; P_0^{\mathcal{A}}, P_1^{\mathcal{A}}, ...). \end{aligned}$

This is equivalent to Σ -reducibility without parameters.

Iso(A) is the category of copies of A with domain ω . The morphisms are isomorphisms between copies of A.

Recall: a functor F from Iso(A) to Iso(B)

- (1) assigns to each copy $\widehat{\mathcal{A}}$ in $Iso(\mathcal{A})$ a structure $F(\widehat{\mathcal{A}})$ in $Iso(\mathcal{B})$,
- (2) assigns to each isomorphism $f: \widehat{\mathcal{A}} \to \widetilde{\mathcal{A}}$ in $Iso(\mathcal{A})$ an isomorphism $F(f): F(\widehat{\mathcal{A}}) \to F(\widetilde{\mathcal{A}})$ in $Iso(\mathcal{B})$.

Definition

 ${\it F}$ is computable if there are computable operators Φ and Φ_* such that

(1) for every $\widehat{\mathcal{A}} \in \text{Iso}(\mathcal{A})$, $\Phi^{D(\widehat{\mathcal{A}})}$ is the atomic diagram of $F(\mathcal{A})$,

(2) for every isomorphism $f : \widehat{\mathcal{A}} \to \widetilde{\mathcal{A}}, F(f) = \Phi^{D(\widehat{\mathcal{A}}) \oplus f \oplus D(\widetilde{\mathcal{A}})}_*$

Theorem

Question

If \mathcal{A} is a computable structure, is this vacuous?

Effective isomorphisms of functors

Let $F, G: Iso(\mathcal{B}) \to Iso(\mathcal{A})$ be computable functors.

Definition

F is *effectively isomorphic* to *G* if there is a computable Turing functional Λ such that for any $\widetilde{\mathcal{B}} \in \text{Iso}(\mathcal{B})$, $\Lambda^{\widetilde{\mathcal{B}}}$ is an isomorphism from $F(\widetilde{\mathcal{B}})$ to $G(\widetilde{\mathcal{B}})$, and the following diagram commutes:

A finer analysis

Let $F: Iso(\mathcal{B}) \to Iso(\mathcal{A})$ be a computable functor. Using the main theorem, we get an interpretation \mathcal{I} of \mathcal{A} in \mathcal{B} . Again using the main theorem, we get a functor $F_{\mathcal{I}}$ from this interpretation.

Proposition

These two functors are effectively isomorphic.

Example

Let $\mathcal{A} = \mathcal{B} = (\omega, 0, +)$. Consider the functors:

- F := identity functor
- ${\it G}~:=~{\rm constant}$ functor giving the standard presentation of ω

These are not effectively isomorphic, and the interpretations we get are faithful to the functor.

 \mathcal{A} and \mathcal{B} are *effectively bi-interpretable* if there are effective interpretations of each in the other, and u.r.i. computable isomorphisms $\mathcal{D}om_{\mathcal{A}}^{(\mathcal{D}om_{\mathcal{B}}^{\mathcal{A}})} \to \mathcal{A}$ and $\mathcal{D}om_{\mathcal{B}}^{(\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}})} \to \mathcal{B}$.

 \mathcal{A} and \mathcal{B} are *computably bi-transformable* if there are computable functors $F: Iso(\mathcal{A}) \rightarrow Iso(\mathcal{B})$ and $G: Iso(\mathcal{B}) \rightarrow Iso(\mathcal{A})$ such that both $F \circ G: Iso(\mathcal{B}) \rightarrow Iso(\mathcal{B})$ and $G \circ F: Iso(\mathcal{A}) \rightarrow Iso(\mathcal{A})$ are effectively isomorphic to the identity functor.

So if $\widehat{\mathcal{B}}$ is a copy of \mathcal{B} , then $F(G(\widehat{\mathcal{B}})) \cong \widehat{\mathcal{B}}$ and the isomorphism can be computed uniformly in $\widehat{\mathcal{B}}$.

Theorem

Classes of structures

Let $\mathfrak C$ and $\mathfrak D$ be classes of structures.

Definition

 \mathfrak{C} is uniformly transformally reducible to \mathfrak{D} if there is a subclass \mathfrak{D}' of \mathfrak{D} and computable functors $F: \mathfrak{C} \to \mathfrak{D}', G: \mathfrak{D}' \to \mathfrak{C}$ such that $F \circ G$ and $G \circ F$ are effectively isomorphic to the identity functor.

Definition

 \mathfrak{C} is reducible via effective bi-interpretability to \mathfrak{D} if for every $\mathcal{C} \in \mathfrak{C}$ there is a $\mathcal{D} \in \mathfrak{D}$ such that \mathcal{C} and \mathcal{D} are effectively bi-interpretable and the formulas involved do not depend on the choice of \mathcal{C} or \mathcal{D} .

Theorem

€ is reducible via effective bi-interpretability to D ↓

 $\mathfrak C$ is uniformly transformally reducible to $\mathfrak D.$

Theorem (Hirschfeldt, Khoussainov, Shore, Slinko)

Every class is reducible via effective bi-interpretability to each of the following classes:

- undirected graphs,
- 2 partial orderings, and
- Iattices,
- and, after naming finitely many constants,
 - integral domains,
 - commutative semigroups, and
 - 3 2-step nilpotent groups.

Theorem (Miller, Park, Poonen, Schoutens, Shlapentokh)

We can add fields of characteristic zero to the first list above.

Theorem (Marker, Miller)

There is a computable functor from graphs to differentially closed fields (and an inverse functor, defined only on some differentially closed fields, which is 0'-computable).

Theorem (Ocasio)

There is a computable functor from linear orders to real closed fields (and an inverse functor, defined only on some real closed fields, which is 0'-computable).