Matthew Harrison-Trainor

Joint work with Alexander Melnikov,
Russell Miller, and Antonio Montalbán

University of California, Berkeley

Georgetown, March 2015
The main theorem (stated roughly)

All structures are countable with domain ω.

Throughout, \mathcal{A} and \mathcal{B} will be structures.

Theorem

There is a correspondence between “effective interpretations” and “computable functors”.

Example

Let \mathcal{A} be the equivalence structure with one equivalence class of size n for each n.

Let \mathcal{B} be the graph which consists of a cycle of size n for each n.

\mathcal{A} is effectively interpretable in \mathcal{B} (in fact, they are bi-interpretable).
<table>
<thead>
<tr>
<th>Computability</th>
<th>Syntactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muchnik reducibility</td>
<td></td>
</tr>
<tr>
<td>Medvedev reducibility</td>
<td></td>
</tr>
<tr>
<td>Computable functor</td>
<td>Σ-reducibility/effective interpretations</td>
</tr>
</tbody>
</table>
A relation on \mathcal{A} is a subset of $\mathcal{A}^{<\omega}$ (not \mathcal{A}^n for some n).

For example this allows us to code subsets of $\mathcal{A}^{<\omega} \times \omega$ as subsets of $\mathcal{A}^{<\omega}$ in an effective way using the length of tuples.

Many results which were originally proven for subsets of \mathcal{A}^n still hold for subsets of $\mathcal{A}^{<\omega}$.
Let R be a relation on $\mathcal{A}^{<\omega}$.

Definition

R is *uniformly relatively intrinsically computably enumerable (u.r.i.c.e.*) if there is a c.e. operator W such that for every copy $(\mathcal{B}, R^\mathcal{B})$ of (\mathcal{A}, R), $R^\mathcal{B} = W^{D(\mathcal{B})}$.

R is *uniformly relatively intrinsically computable (u.r.i. computable)* if there is a computable operator Ψ such that for every copy $(\mathcal{B}, R^\mathcal{B})$ of (\mathcal{A}, R), $R^\mathcal{B} = \Psi^{D(\mathcal{B})}$.

Recall:

Theorem (Ash-Knight-Manasse-Slaman,Chisholm)

R is u.r.i.c.e. if and only if it is definable by a Σ^c_1 formula without parameters.
Let $\mathcal{A} = (A; P^A_0, P^A_1, ...)$ where $P^A_i \subseteq A^{a(i)}$.

Definition

\mathcal{A} is *effectively interpretable* in \mathcal{B} if there exist a u.r.i. computable sequence of relations $(\text{Dom}^B_\mathcal{A}, \sim, R_0, R_1, ...)$ such that

1. $\text{Dom}^B_\mathcal{A} \subseteq B^{<\omega}$,
2. \sim is an equivalence relation on $\text{Dom}^B_\mathcal{A}$,
3. $R_i \subseteq (B^{<\omega})^{a(i)}$ is closed under \sim within $\text{Dom}^B_\mathcal{A}$,

and a function $f^B_\mathcal{A}: \text{Dom}^B_\mathcal{A} \to A$ which induces an isomorphism:

$$(\text{Dom}^B_\mathcal{A}/\sim; R_0/\sim, R_1/\sim, ...) \cong (A; P^A_0, P^A_1, ...).$$

This is equivalent to Σ-reducibility without parameters.
Definition

Iso(\(A\)) is the category of copies of \(A\) with domain \(\omega\). The morphisms are isomorphisms between copies of \(A\).

Recall: a functor \(F\) from Iso(\(A\)) to Iso(\(B\))

1. assigns to each copy \(\widehat{A}\) in Iso(\(A\)) a structure \(F(\widehat{A})\) in Iso(\(B\)),
2. assigns to each isomorphism \(f: \widehat{A} \rightarrow \widehat{A}\) in Iso(\(A\)) an isomorphism \(F(f): F(\widehat{A}) \rightarrow F(\widehat{A})\) in Iso(\(B\)).

Definition

\(F\) is \emph{computable} if there are computable operators \(\Phi\) and \(\Phi_*\) such that

1. for every \(\widehat{A} \in \text{Iso}(A)\), \(\Phi_{D(\widehat{A})}\) is the atomic diagram of \(F(A)\),
2. for every isomorphism \(f: \widehat{A} \rightarrow \widehat{A}\), \(F(f) = \Phi_{D(\widehat{A})} \oplus f \oplus D(\widehat{A})\).
The main theorem

Theorem

\[A \text{ is effectively interpretable in } B \]

\[\iff \]

\[\text{there is a computable functor } F \text{ from } B \text{ to } A. \]

Question

If \(A \) is a computable structure, is this vacuous?
Let $F, G : \text{Iso}(B) \rightarrow \text{Iso}(A)$ be computable functors.

Definition

F is *effectively isomorphic* to G if there is a computable Turing functional Λ such that for any $\tilde{B} \in \text{Iso}(B)$, $\Lambda \tilde{B}$ is an isomorphism from $F(\tilde{B})$ to $G(\tilde{B})$, and the following diagram commutes:
Let $F : \text{Iso}(B) \to \text{Iso}(A)$ be a computable functor. Using the main theorem, we get an interpretation \mathcal{I} of A in B. Again using the main theorem, we get a functor $F_{\mathcal{I}}$ from this interpretation.

Proposition

These two functors are effectively isomorphic.

Example

Let $A = B = (\omega, 0, +)$. Consider the functors:

$$F \ := \ \text{identity functor}$$

$$G \ := \ \text{constant functor giving the standard presentation of } \omega$$

These are not effectively isomorphic, and the interpretations we get are faithful to the functor.
Definition

A and B are effectively bi-interpretable if there are effective interpretations of each in the other, and u.r.i. computable isomorphisms $\text{Dom}_A^{\text{Dom}_B^A} \rightarrow A$ and $\text{Dom}_B^{\text{Dom}_A^B} \rightarrow B$.

$$
\text{Dom}_A^B \xrightarrow{g} \text{Dom}_B^{\text{Dom}_A^B}
$$
Definition

\(\mathcal{A} \) and \(\mathcal{B} \) are *computably bi-transformable* if there are computable functors \(F : \text{Iso}(\mathcal{A}) \to \text{Iso}(\mathcal{B}) \) and \(G : \text{Iso}(\mathcal{B}) \to \text{Iso}(\mathcal{A}) \) such that both \(F \circ G : \text{Iso}(\mathcal{B}) \to \text{Iso}(\mathcal{B}) \) and \(G \circ F : \text{Iso}(\mathcal{A}) \to \text{Iso}(\mathcal{A}) \) are effectively isomorphic to the identity functor.

So if \(\widehat{\mathcal{B}} \) is a copy of \(\mathcal{B} \), then \(F(G(\widehat{\mathcal{B}})) \cong \widehat{\mathcal{B}} \) and the isomorphism can be computed uniformly in \(\widehat{\mathcal{B}} \).

Theorem

\[\mathcal{A} \text{ and } \mathcal{B} \text{ are effectively bi-interpretable} \]

\[\iff \]

\[\mathcal{A} \text{ and } \mathcal{B} \text{ are computably bi-transformable.} \]
Classes of structures

Let \(\mathcal{C} \) and \(\mathcal{D} \) be classes of structures.

Definition

\(\mathcal{C} \) is *uniformly transformally reducible* to \(\mathcal{D} \) if there is a subclass \(\mathcal{D}' \) of \(\mathcal{D} \) and computable functors \(F: \mathcal{C} \to \mathcal{D}' \), \(G: \mathcal{D}' \to \mathcal{C} \) such that \(F \circ G \) and \(G \circ F \) are effectively isomorphic to the identity functor.

Definition

\(\mathcal{C} \) is *reducible via effective bi-interpretability* to \(\mathcal{D} \) if for every \(\mathcal{C} \in \mathcal{C} \) there is a \(\mathcal{D} \in \mathcal{D} \) such that \(\mathcal{C} \) and \(\mathcal{D} \) are effectively bi-interpretable and the formulas involved do not depend on the choice of \(\mathcal{C} \) or \(\mathcal{D} \).

Theorem

\[\mathcal{C} \text{ is reducible via effective bi-interpretability to } \mathcal{D} \]

\[\iff \]

\[\mathcal{C} \text{ is uniformly transformally reducible to } \mathcal{D}. \]
Examples

Theorem (Hirschfeldt, Khoussainov, Shore, Slinko)

Every class is reducible via effective bi-interpretability to each of the following classes:

1. undirected graphs,
2. partial orderings, and
3. lattices,

and, after naming finitely many constants,

1. integral domains,
2. commutative semigroups, and
3. 2-step nilpotent groups.

Theorem (Miller, Park, Poonen, Schoutens, Shlapentokh)

We can add fields of characteristic zero to the first list above.
Examples of interpretations above a jump

Theorem (Marker, Miller)

There is a computable functor from graphs to differentially closed fields (and an inverse functor, defined only on some differentially closed fields, which is $0'$-computable).

Theorem (Ocasio)

There is a computable functor from linear orders to real closed fields (and an inverse functor, defined only on some real closed fields, which is $0'$-computable).