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Abstract. This paper is about the relation between two kinds of models for

propositional modal logic: possibility models in the style of Humberstone and

possible world models in the style of Kripke. We show that every countable
possibility modelM is completed by a Kripke model K, its worldization; every

total world of K is the limit of more and more refined possibilities in M, and

every possibility in M is realized by some total world of K. In addition,
we define a general notion of a possibilization of a Kripke model, which is a

possibility model whose possibilities are sets of worlds from the Kripke model.

We then characterize the class of possibility models that are isomorphic to the
possibilization of some Kripke model. In particular, every possibility model

in this class can be represented as a possibilization of one of its worldizations;
and every possibility model can be naturally transformed into one in this class

by, for example, deleting duplicated possibilities. This representation theorem

clarifies the relationship between possibility models and Kripke models.

1. Introduction

Humberstone [Hum81] introduced possibility models as an alternative semantics
for propositional modal logic. In a possibility model, the worlds of a Kripke model
are replaced by partial possibilities. A possibility determines some parts or aspects
of a world; as Edgington [Edg85] explains (see also Chapter 10 of [Hal13] and
Chapter 6 of [Rum15]):

Possibilities differ from possible worlds in leaving many details un-
specified... I am counting the possibility that the die lands six-up
as one possibility. There are indefinitely many possible worlds com-
patible with this one possibility which vary not only in the precise
location and orientation of the landed die, but also as to whether
it is raining in China at the time, or at any other time, and so on
ad infinitum . . . . (564)

While a world in a Kripke model determines the truth or falsity of every sen-
tence in the language under consideration, a possibility might determine the truth
of some sentences, the falsity of others, and leave the truth of further sentences
undetermined. One possibility might refine another. If a possibility Y refines a
possibility X, then any atomic proposition true at X remains true at Y and any
atomic proposition false at X remains false at Y ; however, of the remaining atomic
propositions, some may become true at Y , some may become false, and others may
remain undecided. There is also a modal accessibility relation between possibilities.
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Holliday [Hol15] shows that at the level of frames, possibility semantics is more
general than Kripke semantics: there are possibility frames as in Definition 2.1
below whose logic is a normal modal logic that is not the logic of any class of
Kripke frames. This is explained in [Hol15] in terms of a duality theory relating
possibility frames and certain modal algebras, which is contrasted with the well-
known duality theory for Kripke frames. Our goal in this paper is to instead look at
models: we will relate possibility models and Kripke models, in terms of structural
transformations of one kind of model into the other. (As we will explain in Section
6, our results can also be viewed as relating general frames for possibility semantics
and Kripke semantics.) For other recent work on possibility semantics, see [Gar13],
[Hol14], [vBBH16], [Yam16], and [HT16] (and the related [BH16]).

One often thinks of possibilities as being sets of worlds; the possibility that the
die lands six-up can be identified or at least associated with the set of total worlds in
which the die lands six-up. There are objections to this on philosophical grounds—
Edgington [Edg85, p. 564] asserts that when one thinks of a possibility, one is not
thinking of a single possible world or even a set of possible worlds, but rather some
other type of object—but the idea of possibilities as sets-of-total-worlds can be
thought of as a simplified motivating example of possibility models. Even if a set
of total worlds is not what one thinks of when thinking of a possibility, one might
still associate possibilities with sets of total worlds.

On Edgington’s view, no possibility is total, that is, no possibility decides every
proposition, and thus every possibility should have a proper refinement. Of course,
others would disagree and argue that a possibility might or might not be total.
While this is an interesting discussion, in this paper we will not take either side.
We will make no assumptions about whether or not a possibility might be total,
and in our models we will neither prohibit total worlds (i.e., possibilities with no
proper refinements) nor require that they exist.

In later sections, we will formally define what we mean by a possibility model, but
for now we will informally outline the main results of this paper. Given a countable
Kripke model, we can consider possibilities coming from that Kripke model, i.e., as
sets of total worlds. These possibilities form a possibility model which is intimately
connected to the Kripke model in the sense that a possibility makes some sentence
true if and only if every world that it contains makes that sentence true. Moreover,
any sufficiently rich1 collection of possibilities generates a possibility model; we call
a possibility model arising from such a collection a possibilization of the Kripke
model. See Definition 2.9 for the full definition of a possibilization. A Kripke
model can be viewed as a possibilization of itself, identifying each world with the
possibility containing only itself. The possibilizations of Kripke models are among
the prototypical examples of possibility models.

An abstract possibility model has certain conditions on the possibilities and
the refinement relation—for example, that refinement should maintain the truth of
sentences—but it need not have any relation with Kripke models, and the possi-
bilities need not consist of sets of total worlds. Our first main result is that every
countable possibility model M has a worldization K. A worldization of M is a
Kripke model K such that every possibility in M is refined by some total world of

1For example, for any two worlds, there should be a possibility containing one but not the
other. The full list of requirements is given in Definition 2.9.
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K and so that every total world of K is the limit of more and more refined possibil-
ities inM. The full definition of a worldization will be given later in Definition 3.1.

Theorem 1.1. Let M be a countable possibility model in a countable language.
Then there is a Kripke model K which is a worldization of M.

The difficulty in proving this theorem is that the accessibility relation of the
worldization K should come from the accessibility relation onM; it is obvious how
to extend each individual possibility to a total world, but it is not obvious how to
do this simultaneously for each possibility of M while respecting the accessibility
relation. (See the definition of a worldization for the requirements we place on the
accessibility relation.)

There are two important hypotheses in the statement of the theorem. First, we
require that the language be countable, and second, that the number of possibili-
ties be countable. We produce counteraxamples in both cases. Our counterexample
when we allow the number of possibilities to be uncountable uses Aronszajn trees.
(Aronszajn trees are trees with odd behaviour coming from set theory.) It is likely
that most natural (i.e., non-pathological) possibility models for a countable lan-
guage have a worldization.

Arguments have been given, from a philisophical perspective, for and against
the idea of constructing worlds out of limits of possibilities. Rumfitt [Rum15], for
example, describes how one might try to construct a total world:

[T]he possibility that I have red hair leaves it undetermined whether
Ed Miliband will win a General Election. But there is also the
possibility that I have red hair while Miliband wins an election,
and the distinct possibility that I have red hair while he does not.
By iterating this process, it may be suggested, we shall eventually
reach fully determinate possibilities which do settle the truth or
falsity of all statements. These possibilities will be the points of
modal space . . . . (159)

Our construction follows essentially the strategy described above, which has similar-
ities to the construction of a generic in set theory (see [Coh66], [Jec03], or [Kun80]).
However, our proof of Theorem 1.1 requires much more than the strategy just de-
scribed; most of the work that we will do goes into picking appropriate sequences
of refinements so that one can define the modal accessibility relation between the
constructed points. It must also be noted that Rumfitt [Rum15] expresses doubts
about the construction of the points themselves:

[T]he business of making a possibility more determinate seems open-
ended. There are possibilities that the child at home should be a
boy, a six-year-old boy, a six-year-old boy with blue eyes, a six-year-
old boy with blue eyes who weighs 3 stone, and so forth. So far
from terminating in a fully determinate possibility, we seem to have
an indefinitely long sequence of increasingly determinate possibili-
ties, any one of which is open to further determination. But then,
so far from conceiving of our rational activities as discriminating
between regions of determinate points, we appear to have no clear
conception of such a point at all. (159)

Here it is important that we restrict our attention to a countable set of propositions,
so that we can define a countable sequence of possibilities such that each proposition
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is decided at some point in the sequence. Although every possibility in the sequence
may be open to further determination, we can take the countable sequence itself
as a “world” which decides each proposition in the given countable set. This is
compatible with Rumfitt’s assertion that we may never reach a possibility that
“settles the truth or falsity of all statements” without restriction.

If a possibility model M is a possibilization of a Kripke model K, then K is a
worldization of M. Of course, not all possibility models are possibilizations be-
cause, for example, the possibilities may not be sets of total worlds. Even up to
isomorphism, a possibility model could include duplication of possibilities (two pos-
sibilities which have exactly the same refinements) or there might be possibilities
X and Y such that every non-trivial refinement of Y is accessible from X, but Y
is not. Neither of these situations can occur in a possibilization. However, every
possibility model embeds in a very natural way into one which avoids these two
issues (see Propositions 2.14 and 2.16). We call such a possibility model separa-
tive and strong. Then we are able to show that every countable, separative, and
strong possibility model is (up to isomorphism) a possibilization. Thus, up to some
equivalence such as allowing duplication of possibilities, every countable possibility
model is a possibilization.

Theorem 1.2. Let M be a countable, separative, and strong possibility model in
a countable language. Then M is isomorphic to a possibilization of a countable
Kripke model.

We prove Theorem 1.2 by embedding M into a worldization K with a couple of
additional properties. Then we interpret the possibilities in M as sets of total
worlds from K.

At the level of frames, we can define a notion of frame-worldization. A Kripke
frame F is a frame-worldization of a possibility frame G if two conditions are met.
First, the possibilities and the worlds of F and G are related as in a worldization
of models (so that every possibility in G is refined by some total world of F and
so that every total world of F is the limit of more and more refined possibilities in
G). Second, any Kripke model K based on F should induce a possibility model M
based on G, so that K is a worldization of M, and vice versa.

There are countable possibility frames which have no frame-worldizations. This
ties in to Holliday’s [Hol15] result that there are possibility frames whose logic is
not the logic of any class of Kripke frames. Such a possibility frame could not have
a worldization.

On the other hand, it is natural to consider general possibility frames and general
Kripke frames. If a general possibility frame has countably many admissible sets,
then it has a frame-worldization.

Theorem 1.3. Let G be a countable general possibility frame with countably many
admissible sets. Then there is a general Kripke frame F which is a frame-worldization
of F .

We will begin in Section 2 by defining possibility models, possibilizations, separ-
ative possibility models, and strong possibility models. In Section 3, we will define
worldizations and prove Theorem 1.1. In Section 4, we will prove Theorem 1.2.
In Section 5, we will give an example showing that uncountable possibility models
need not have worldizations. In Section 6, we will give an example of a possibility
frame which has no frame-worldizations, and finally we will prove Theorem 1.3.
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2. Possibility Models

2.1. Possibility Semantics. Let P be a set of propositional variables, and let
L(P ) be the standard language of propositional modal logic with modal operators
� and ♦ and propositions coming from P .

The following frames may be viewed as a special case of the “full possibility
frames” of [Hol15] and as a generalization of the frames of [Hum81].2

Definition 2.1. A (basic) possibility frame is a tuple F = (P,R,≤) where:

(1) P is a non-empty set of possibilities,
(2) R ⊆ P × P is a binary accessibility relation, and
(3) ≤ is a partial order on P, the refinement relation,

satisfying the following three properties:

P1: For all X, X ′, and Y with X ′ ≥ X, if X ′RY then XRY .

X ′ // Y

X

OO

R

>>

P2: For all X, Y , and Y ′ with Y ′ ≥ Y , if XRY then XRY ′.

Y ′

X

>>

R
// Y

OO

R: For all X and Y , if XRY then there is X ′ ≥ X such that for all X ′′ ≥ X ′,
there is Y ′ ≥ Y such that X ′′RY ′.

X ′′

!!

X ′

∀

OO

Y ′

X
R
//

∃

OO

Y

∃

OO

We interpret XRY as meaning that what is necessary at X is true at Y . X ≥ Y
means that X determines each issue which Y does, in the same way, and possibly
more. Our possibility frames are more general than those considered by Humber-
stone. Humberstone asked that a stronger version of the condition R be satisfied,
namely:

R++: For all X and Y , if XRY then there is X ′ ≥ X such that for all X ′′ ≥ X ′,
X ′′RY .3

2Holliday [Hol15] writes ‘X v Y ’ to mean that X is a refinement of Y , going “down” rather

than “up” for refinements, while [Hum81] writes ‘X > Y ’ to mean that X is a refinement of Y .

We will write ‘X ≥ Y ’ to mean that X is a refinement of Y .
3There is also an intermediate condition R+ discussed in [HT16] and [Hol15].
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See [Hol15, Section 2.3] for a discussion of why it is desirable to use the weaker
condition on the refinability relation.

A partial function f : D → C is a function which is defined on some, possibly
proper, subset of D. If x ∈ D and f is defined at x ∈ D and maps x to y ∈ C, we
write f(x) = y; otherwise, if f is not defined at x, we write f(x) = ?.

Definition 2.2. A possibility model is a tuple M = (P,R,≤, V ) where F =
(P,R,≤) is a possibility frame and V : P × P → {T, F} is a partial function, the
valuation, satisfying:

Persistence: For any Y ≥ X in P and any p ∈ P , if V (X, p) = T then V (Y, p) = T,
and similarly for F.

Refinability: For any X ∈ P, if V (x, p) = ?, then there exist Y ≥ X and Z ≥ X
such that V (Y, p) = F and V (Z, p) = T.

M is said to be based on F .

If X ∈ P, then we interpret V (X, p) = T as saying that p is true at X, V (X, p) = F

as saying that p is false at X, and V (X, p) = ? as saying that p is undetermined at
X.

Definition 2.3. Given a possibility model M = (P,R,≤, V ), the satisfaction
relation is defined inductively as follows:

(1) M, X |= p if V (X, p) = T.
(2) M, X |= ϕ ∧ ψ if M, X |= ϕ and M, X |= ψ.
(3) M, X |= ¬ϕ if for all Y ≥ X, M, Y 2 ϕ.
(4) M, X |= �ϕ if for all Y ∈ P such that XRY , M, Y |= ϕ.

Humberstone [Hum81] proves all of the following lemmas and proposition (see
[Hol15] for the proofs using the weaker refinability condition).

Lemma 2.4 (Persistence). Let M = (P,R,≤, V ) be a possibility model. If Y ≥ X
and M, X |= ϕ, then M, Y |= ϕ.

Lemma 2.5 (Refinability). LetM = (P,R,≤, V ) be a possibility model. IfM, X 2
ϕ, then for some Y ≥ X, M, Y |= ¬ϕ.

Lemma 2.6 (Double Negation Elimination). LetM = (P,R,≤, V ) be a possibility
model. M, X |= ϕ if and only if M, X |= ¬¬ϕ

As usual, we say that a sentence ϕ is globally true in a possibility model M if
M, X |= ϕ for all X, and ϕ is valid if it is globally true in all possibility models. A
sentence ϕ is satisfiable if there is a model M and possibility X with M, X |= ϕ.

Proposition 2.7 (Soundness and Completeness). For any sentence ϕ, the follow-
ing are equivalent:

(1) ϕ is valid over all possibility models,
(2) ϕ is valid over all Kripke models,
(3) ϕ is provable in the minimal normal modal logic K.

2.2. Possibilizations. The simplest example of a possibilization is the powerset
possibilization, where the set of possibilities is taken to be as large as possible.4

4Holliday [Hol15, Fact B.1] observes that a powerset possibilization might not satisfy Humber-
stone’s stronger condition R++.
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Definition 2.8. Let K = (W,S, U). A powerset possibilization of K is a possibility
model M = (P,R,≤, V ) where:

(1) P = ℘(W) \ {∅};
(2) XRY if and only if Y ⊆ S[X] = {w′ : (∃w ∈ X)wSw′};
(3) for X,Y ∈ P, X ≥ Y if and only if X ⊆ Y ;
(4) V (X, p) = T if for all w ∈ X, U(w, p) = T; V (X, p) = F if for all w ∈ X,

U(w, p) = F; and otherwise V (X, p) = ?.

More generally, a possibilization of a Kripke model will be a possibility model where
the possibilities are sets of worlds from the Kripke model, with the requirement that
the collection of possibilities is sufficiently rich to capture the structure of the Kripke
model.

Given a Kripke model K = (W,S, U) and a set of worlds Y ⊆ W, we define
S[Y ] = {v : (∃w ∈ Y )wSv} and ♦Y = {w : (∃v ∈ Y )wSv}.

Definition 2.9. Let K = (W,S, U) be a Kripke model. A possibilization of K is a
possibility model M = (P,R,≤, V ) where:

(A1) P is a non-empty collection of non-empty subsets of W such that
(i) if v 6= w, there is X ∈ P with v ∈ X and w /∈ X;
(ii) if X ∈ P and v /∈ X, there is Y ∈ P with v ∈ Y and X ∩ Y = ∅;

(iii) if K, v |= ϕ, there is Y ∈ P with v ∈ Y and such that for all w ∈ Y ,
K, w |= ϕ;

(iv) if v ∈ S[X], there is Y ∈ P with v ∈ Y ⊆ S[X];
(v) if Y * S[X], there is Y ′ ∈ P with Y ′ ⊆ Y and Y ′ ∩ S[X] = ∅;
(vi) if ♦Y is non-empty, there is X ∈ P with X ⊆ ♦Y ;
(vii) if X,Y ∈ P and v ∈ X ∩ Y , there is Z ∈ P with v ∈ Z ⊆ X ∩ Y ;

(viii) If not vSw, there is X ∈ P with v ∈ X and w /∈ S[X].

The definitions of the accessibility relation, refinement relation, and valuation are
exactly the same as for the powerset possibilization in Definition 2.8:

(A2) XRY if and only if Y ⊆ S[X];
(A3) for X,Y ∈ P, X ≥ Y if and only if X ⊆ Y ;
(A4) V (X, p) = T if for all w ∈ X, U(w, p) = T; V (X, p) = F if for all w ∈ X,

U(w, p) = F; and otherwise V (X, p) = ?.

The conditions (i)-(viii) are all natural conditions. For example, (iii) says that if
ϕ is true at a world v, then v belongs to a possibility which makes v true, and (iv)
says that if v is accessible from some world in X, then v belongs to a possibility Y
which is accessible from X.

The powerset possibilization of a Kripke model is a possibilization, and a Kripke
model can be viewed as a possibilization of itself. Possibilizations are, of course,
possibility models.

Proposition 2.10. If M = (P,R,≤, V ) is a possibilization of K = (W,S, U),
then M is a possibility model.

Proof. To see P1, suppose that X ′ ≥ X and X ′RY . Then Y ⊆ S[X ′] ⊆ S[X] and
so XRY . To see P2, suppose that Y ′ ≥ Y and XRY . Then Y ′ ⊆ Y ⊆ S[X] and
so XRY ′.

For R, suppose that XRY . By (vi), let X ′ ⊆ X be such that X ′ ⊆ ♦Y . Then
for all X ′′ ⊆ X ′, by (iv) and (vii) there is Y ′ ⊆ Y ∩ S[X ′′]. Thus X ′′RY ′.
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For Persistence, suppose that Y ≥ X and p ∈ P are such that V (X, p) = T or
V (X, p) = F. Without loss of generality, suppose that V (X, p) = T. Then for all
v ∈ X, U(v, p) = T. Since Y ⊆ X, V (Y, p) = T.

For Refinability, suppose that V (X, p) = ?. Then there are v, w ∈ X with
U(v, p) = T and U(w, p) = F. So by (iii) and (vii) there are Y,Z ∈ P with Y ≥ X
and Z ≥ X such that V (Y, p) = T and V (Z, p) = F. �

Truth at a possibility in a possibilization is just truth at all of the total worlds
in that possibility.

Proposition 2.11. Let M = (P,R,≤, V ) be a possibilization of K = (W,S, U).
For any sentence ϕ:

M, X |= ϕ if and only if K, v |= ϕ for all v ∈ X.

Proof. The proof is by induction on the complexity of ϕ. We have

M, X |= p⇐⇒ V (X, p) = T⇐⇒ ∀v ∈ X,U(v, p) = T⇐⇒ ∀v ∈ X,K, v |= p.

The case of a conjunction is simple.
For a negation, if for all v ∈ X, K, v |= ¬ϕ, then for all Y ≥ X,M, Y 2 ϕ by the

induction hypothesis and hence M, X |= ¬ϕ. On the other hand, if M, X |= ¬ϕ,
then given v ∈ X we must show that K, v |= ¬ϕ. Suppose towards a contradiction
that K, v |= ϕ for some such v. Then by (iii) and (vii) there is Y ≥ X with v ∈ Y
such that for all w ∈ Y , K, w |= ϕ. Since M, X |= ¬ϕ, M, Y 2 ϕ. This is a
contradiction.

Finally, suppose that for all v ∈ X, K, v |= �ϕ. Suppose that XRY . Given
w ∈ Y , there is v ∈ X such that vSw. Then since K, v |= �ϕ, K, w |= ϕ. So
M, Y |= ϕ. Since Y was arbitrary with XRY , M, X |= �ϕ. On the other hand,
suppose that M, X |= �ϕ. Fix v ∈ X, and w such that vSw. By (iii) there is Y
such that w ∈ Y ⊆ S[X]. Then XRY , and so M, Y |= ϕ. Thus, by the induction
hypothesis, K, w |= ϕ as desired. �

2.3. Separative possibility models. Suppose that M = (P,R,≤, V ) is a possi-
bilization of a Kripke model K. If X,Y ∈ P are two sets of total worlds, X * Y ,
then there is v ∈ X \ Y . Then (ii) and (vii) imply that there is an X ′ ∈ P with
v ∈ X ′ ⊆ X and X ′ ∩ Y = ∅. Thus X ′ and Y have no common refinements, for
which we write X ′ ⊥ Y .

The following natural class of possibility models is studied in Section 4.1 of
[Hol15].5

Definition 2.12. Let M = (P,R,≤, V ) be a possibility model. M is separative
if whenever X � Y , there is X ′ ≥ Y such that X ′ ⊥ Y .

Define
X ≥s Y ⇐⇒ (∀X ′ ≥ X)(∃X ′′ ≥ X ′) X ′′ ≥ Y.

Then a possibility model M is separative if and only if the refinement relation ≥
is equal to ≥s.

Not every possibility model is separative, though as remarked above, every pos-
sibilization is separative. However, every possibility model embeds in a natural way
into a separative quotient by identifying equivalent possibilities, such as duplicated
possibilities.

5The terminology comes from set-theoretic forcing; see for example p. 204 of [Jec03].
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Definition 2.13. Let M = (P,R,≤, V ) be a possibility model. Let X 's Y if
and only if X ≥s Y and Y ≥s X; this is an equivalence relation. Write [X] for the
equivalence class of X under 's. Let:

(1) P ′ be the equivalence classes under 's,
(2) [X]R′[Y ] if there are X ′ 's X and Y ′ 's Y with X ′RY ′,
(3) V ′([X], p) = T if V (X, p) = T and V ′([X], p) = F if V (X, p) = F; otherwise

V ′([X], p) = ?.

Ms = (P ′,R′,�s, V
′) is the separative quotient of M.

This is well-defined. There is a natural embedding of a possibility model into its
separative quotient, and this embedding maintains truth.

Proposition 2.14 (Proposition 4.10 of [Hol15]). Let M = (P,R,≤, V ) be a pos-
sibility model. Ms is a separative possibility model, and

M, X |= ϕ⇐⇒Ms, [X] |= ϕ.

2.4. Strong possibility models. Suppose thatM = (P,R,≤, V ) is a possibility
model. If X,Y ∈ P are two possibilities, and for every Y ′ > Y , XRY ′, then it is
natural to expect that XRY .

Now suppose thatM is in fact a possibilization of a Kripke model K = (W,S, U).
If X,Y ∈ P are two sets of total worlds, suppose that for all Y ′ ≥ Y , there is
Y ′′ ≥ Y ′ with XRY ′′. We claim that Y ⊆ S[X]. Suppose for a contradiction that
Y * S[X]. Then by (v), there is Y ′ ≥ Y with Y ′ ∩ S[X] = ∅. So for all Y ′′ ≥ Y ′,
Y ′′ * S[X], i.e., for no Y ′′ ≥ Y ′ do we have XRY ′′. This is a contradiction. Hence
Y ⊆ S[X] and XRY . Note that this is a refinability condition on R. In fact, this
condition has already been studied by Holliday.

Definition 2.15 (Section 2.3 of [Hol15]). A possibility model M = (P,R,≤, V )
is strong if, in addition to satisfying P1, P2, and R, it satisfies: whenever it is the
case that for all Y ′ ≥ Y there is Y ′′ ≥ Y ′ such that XRY ′′, we already have XRY .

Any possibilization is strong. Once again, every possibility model embeds in a
natural way into a strong model (Proposition 2.37 of [Hol15]).

Proposition 2.16. Let M = (P,R,≤, V ) be a possibility model. Define a new
accessibility relation R′ by XR′Y if and only if for all Y ′ ≥ Y there is Y ′′ ≥ Y ′

with XRY ′′. Then M′ = (P,R′,≤, V ) is a strong possibility model and

M, X |= ϕ⇐⇒M′, X |= ϕ.

If M was separative, so is M′, since we have not altered ≤.

3. Worldizations

We say that a Kripke model K is a worldization of a possibility model M if,
informally speaking, each possibility in M is part of a total world from K, and
each total world in K is a limit of more and more refined possibilities. If M is a
possibilization of K, then K will be a worldization of M (though the opposite is
not always true). We will prove this later in Proposition 4.2.

Definition 3.1. LetM = (P,R,≤, V ) be a possibility model and letK = (W,S, U)
be a Kripke model. K is a worldization of M via an embedding Φ : W → ℘(P)
which assigns to each total world w ∈ W a set of possibilities Φ(w) ⊆ P if:
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(W1) for each world w ∈ W, Φ(w) is a maximal order ideal, i.e.,
(a) Φ(w) is downwards-closed under refinement,
(b) any two elements of Φ(w) have a common refinement in Φ(w), and
(c) Φ(w) is maximal with these two properties;

(W2) for each possibility X ∈ P, there is a world w ∈ W such that X ∈ Φ(w);
(W3) any two distinct total worlds v, w ∈ W are separated by possibilities, that

is, there is X ∈ Φ(v) \ Φ(w);
(W4) for each world w ∈ W, and for each sentence ϕ, K, w |= ϕ if and only if

there is some X ∈ Φ(w) such that M, X |= ϕ; and
(W5) for each pair of worlds w, v ∈ W, wSv if and only if for each X ∈ Φ(w)

there is Y ∈ Φ(v) such that XRY .

We say that K is a worldization of M if the Φ which makes K a worldization is
understood from the context, and that M is worldizable if there is a K which is a
worldization of M.

When our models are countable, Φ(w) is determined by some increasing chain in
M. Note that if X,Y ∈ Φ(w), then they have a common refinement, so we cannot
have M, X |= ϕ and M, Y |= ¬ϕ.

We will prove Theorem 1.1, which says that every countable possibility model in a
language with countably many propositional variables has a worldization. The proof
is essentially to construct infinite ascending chains while managing the accessibility
relation to get the appropriate properties. Doing this is surprisingly complicated.
We will begin with a warmup in which we use the stronger condition R++ from
Section 2.1.

Theorem 3.2. Let M be a countable possibility model in a countable language,
satisfying R++. Then there is a Kripke model K which is a worldization of M.

Proof. For each X ∈ M, we will define an increasing chain of possibilities AX =
(AX(n))n∈ω. These chains will form the total worlds of the model K. Let (Xn)n∈ω
be an enumeration of the possibilities in M and ϕ0, ϕ1, . . . an enumeration of the
sentences in the language. For simplicity, we occasionally write Ai for AXi . We
define the chains AX using a recursive construction. Begin with AX(0) = X for
each X.

The idea is that we need to extend the chains in such a way that every formula
is decided at some point in each chain, and also so that if the chain does not satisfy
�ϕ at some point X, there is a witnessing possibility Y which has ¬ϕ so that any
refinement of X is still related via the accessibility relation to Y . As we extend the
chains, we alternate between these two requirements, at each step either deciding
some new formula using the refinability property, or using R++ to lock in a witness
to ♦¬ϕ.

Suppose that we have defined AX(0), . . . , AX(n) for each X. We will now define
AX(n+ 1) for each X. We have two cases, depending on whether n is odd or even.

n is even: Write n = 2k. For each X ∈ M, choose X ′ ≥ AX(n) such that
M, X ′ |= ϕk orM, X ′ |= ¬ϕk. Now, if Xk ≥ X ′, set AX(n+ 1) = Xk, and
otherwise set AX(n+ 1) = X ′.

n is odd: Write n = 2〈k, i〉 + 1 where 〈·, ·〉 : ω2 → ω is bijective. If there is
Y such that Ai(n)RY and M, Y |= ϕk, then we also have Ai(n)RAY (n)
since AY (n) ≥ Y . Using R++, choose X ≥ Ai(n) such that for all X ′ ≥
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X, X ′RAY (n). Set Ai(n + 1) = X. For each other possibility Z, set
AZ(n+ 1) = AZ(n). If no such Y exists, set AZ(n+ 1) = AZ(n) for all Z.

X ′

��

X

∀

OO

$$

Ai(n)

OO

$$

// AY (n)

Y

OO

Figure 1. The extensions of possibilities in the construction. The
dotted line shows the relation R. For all X ′ as shown, R relates
X ′ and AY (n).

This completes the construction of the sequences AX . Let ÂX be the order ideal
which is the downwards closure of AX . At even stages, we ensure that for each Y ,
either Y is part of the chain AX or there is some n such that Y is not a refinement
of AX(n). So ÂX is maximal. Now let W be the set of these order ideals and note

that there may be possibilities X and Y such that ÂX = ÂY . Such an order ideal
is included in F only once. We will define a total world model K with domain F
which is a worldization of M via the identity function. The accessibility relation
will be S. For I, J ∈ F , define ISJ if and only if there is a Y ∈ J such that for
all X ∈ I, XRY . Have an atomic proposition p hold at I ∈ F if and only if for
some X ∈ I, M, X |= p. We make p false at I ∈ F if and only if for some X ∈ I,
M, X |= ¬p . By construction, for each formula ϕ and I ∈ F , there is X ∈ I such

that either M, X |= ϕ or M, X |= ¬ϕ. Also, if for some Y ∈ I = ÂX , M, Y |= ϕ,
then there is some n such that AX(n) ≥ Y and so M, AX(n) |= ϕ.

Properties (W1), (W2), (W3), and (W5) of a worldization are immediate. To
complete the proof, we check (W4) from the definition of worldization. The proof is
by induction on the complexity of formulas. For an atomic proposition p, let I ∈ F
and let X ∈M be such that ÂX = I. Then

K, I |= p⇔ (∃n)M, AX(n) |= p

since, for some n, either M, AX(n) |= p or M, AX(n) |= ¬p. For ϕ ∧ ψ,

K, I |= ϕ ∧ ψ ⇔ K, I |= ϕ and K, I |= ψ

⇔ (∃X ∈ I)M, X |= ϕ and (∃Y ∈ I)M, Y |= ψ

⇔ (∃Z ∈ I)M, Z |= ϕ ∧ ψ
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where, given X and Y witnesses to the second line, the witness Z to the third line
is a common refinement of X and Y . For ¬ϕ,

K, I |= ¬ϕ ⇔ K, I 2 ϕ
⇔ (∀X ∈ I)M, X 2 ϕ
⇔ (∃X ∈ I)M, X |= ¬ϕ

since for some X ∈ I, either M, X |= ϕ or M, X |= ¬ϕ.
Finally, we have the case �ϕ. Suppose that for all X ∈ I, M, X 2 �ϕ. Let

X be such that I = ÂX where X = Xi and let k be such that ¬ϕ = ϕk. Then
at stage n = 2〈k, i〉 + 1 of the construction, we have AX(n) 2 �ϕ, so there is
some Y ∈ M with XRY such that M, Y 2 ϕ; refining Y if necessary, we may
assume that M, Y |= ¬ϕ while still maintaining XRY by P2. Then (possibly for
some different Y such that Y |= ¬ϕ and XRY ) we have AY (n + 1) ≥ Y and for
all Z ≥ AX(n + 1), ZRAY (n + 1). Hence, for each ` ≥ n + 1 and m ≥ n + 1,

AX(`)RAY (m). Thus ÂXSÂY . Since K, ÂY |= ¬ϕ, K, ÂX 2 �ϕ. Thus we have
shown that if K, I |= �ϕ, then for some X ∈ I, M, X |= �ϕ.

Now suppose that for some Y ∈ ÂX , M, Y |= �ϕ. Then by persistence and the

fact that ÂX is the downwards closure of the chain AX ,M, AX(n) |= �ϕ for some n.

Let Z be such that ÂXSÂZ . Then there is some m such that AX(n)RAZ(m), and

so M, AZ(m) |= ϕ. Hence K, ÂZ |= ϕ. Since Z was arbitrary, K, ÂX |= �ϕ. �

Now for Theorem 1.1, we must use R which is weaker than R++. While using
R++ we were able to lock in the witness to ♦¬ϕ in a single step, this is no longer
possible with R. Instead, we have to constantly make sure that we maintain the
same witness for each chain. We will keep track of the witnesses in a tree, so that
there are no circular witness requirements. (By a circular witness requirement, we
mean for example that Y is a witness for X, Z is a witness for Y , and X is a witness
for Z.) This makes the proof somewhat complicated.

Proof of Theorem 1.1. For each X ∈ P, we will define infinitely many increasing
chains of possibilities As

X = (As
X(n))n∈ω with As

X(0) = X. Let (Xn)n∈ω be an
enumeration of the worlds in P and ϕ0, ϕ1, . . . an enumeration of the sentences
in the language L. The chains As

X will be defined using a recursive construction.
First, we must define an auxiliary object that we will build during the construction.

A tree is a graph such that between any two edges there is a unique path. A
rooted tree is a tree with a distinguished node. Each edge in a rooted tree has a
natural direction, towards or away from the root. Thus a rooted tree can be viewed
as a directed tree, a tree in which each edge has a specified direction pointing away
from the root. A (directed) forest is the disjoint union of directed trees. Let T be
a tree. We denote the edge relation of T by T as well. We say that b is a child
of a if T (a, b). We say that a node a is a leaf if it has no children. A connected
component of a forest is a maximal set of nodes which are pairwise connected by a
path; each connected component of a forest is a tree.

At each stage n of the construction, we will have a forest Tn with domain ω×P,
representing the pair 〈s,X〉 corresponding to some chain As

X via some bijection.
Each Tn will have only finitely many edges and the Tn will be nested; that is, if
m < n, and 〈s,X〉 is a child of 〈t, Y 〉 in Tm, then the same is true in Tn (but
not necessarily vice versa). If there is an edge in Tn involving 〈s,X〉, then after
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stage n, we will only add edges outward from 〈s,X〉, and never inward. Thus the
roots of any non-trivial connected components in Tn will remain the roots of their
connected components. We will satisfy the requirement:

(∗) : If 〈s,X〉 is a child of 〈t, Y 〉 in Tn, then for all Y ′ ≥ At
Y (n),

there is X ′ ≥ As
X(n) such that Y ′RX ′.

Let 〈·, ·〉 be a one-to-one function from ω × ω to ω. Begin the construction
with As

X(0) = X for each X ∈ P and s ∈ ω. Suppose that we have defined
As

X(0), . . . , As
X(n) for each 〈s,X〉. Write n+ 1 = 2〈s, i, k〉+ ε where ε is 0 or 1. Let

X = Xi and ϕ = ϕk. Let 〈t0, Y0〉, 〈t1, Y1〉, . . . , 〈t`, Y`〉, 〈s,X〉 be a path from the
root 〈t0, Y0〉 of the connected component of 〈s,X〉 in Tn. Essentially what we want
to do is to extend As

X(n) as we did in the warm-up proof. But to maintain (∗),
we first need to “prepare” the path 〈t0, Y0〉, 〈t1, Y1〉, . . . , 〈t`, Y`〉, 〈s,X〉 by extending
each of those chains using (∗) (and losing (∗) in the process), then extend As

X(n),
and then use R to recover the property (∗). See Figure 3 for a diagram showing
how we do these extensions.

Y ′ // X ′

Ỹ0 Ỹ1 Ỹ2 · · · Ỹn

∀

OO

X̃

∃

OO

Ŷ1 //

OO

Ŷ2

OO

· · · // Ŷ` //

;;OO

X̂

OO

At0
Y0

(n)

::

OO

At1
Y1

(n)

OO

At2
Y2

(n)

OO

· · · At`
Y`

(n)

OO

As
X

OO

Figure 2. The extensions of possibilities in the construction. The
dotted line shows the relation R. For all Y ′ as shown, there is an
X ′ filling in the diagram.

Let Ŷ0 = At0
Y0

(n). By (∗), there is Ŷ1 ≥ At1
Y1

(n) such that Ŷ0RŶ1. Then Ŷ1 ≥
At1

Y1
(n), so again by (∗) there is Ŷ2 ≥ At2

Y2
(n) such that Ŷ1RŶ2. Continuing in this

way, we get that R relates Ŷ0 to Ŷ1, Ŷ1 to Ŷ2, and so on until Ŷ` is related to
X̂ ≥ As

X(n). This completes the “preparation.”

Now in each case ε = 0 or ε = 1, we will define X̃ ≥ X̂.

ε = 0: Choose X̃ ≥ X̂ such that either X̃ |= ϕk or X̃ |= ¬ϕk, and so that either

X̃ ≥ Xk or X̃ is incomparable with Xk.
ε = 1: If there is Z ∈ P such that X̂RZ and Z |= ϕk, choose u such that 〈u, Z〉 has

no edge in Tn, and is greater than any other pair connected to any edge in
Tn. Let Tn+1 be Tn with an additional edge from 〈s,X〉 to 〈u, Z〉. Using

R, choose X̃ ≥ X̂ such that for all X ′ ≥ X̃, there is Z ′ ≥ Au
Z(n) with

X ′RZ ′ (this is to satisfy (∗)).
Now we need to recover (∗). Note that R relates Ŷ` to X̃ by P2. Using R,

choose Ỹ` ≥ Ŷ` such that for all Y ′′` ≥ Ỹn, there is X ′′ ≥ X̃ with Y ′′RX ′′. Then
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using R again, choose Ỹ`−1 ≥ Ŷ`−1 such that for all Y ′′`−1 ≥ Ỹ`−1 there is Y ′′` ≥ Ỹ`
with Y ′′`−1RY ′′` . Continue in this way to define Ỹ0, . . . , Ỹ`. Set Ati

Yi
(n+ 1) = Ỹi. Set

As
X(n + 1) = X̃. For each other 〈u, Z〉, set Au

Z(n + 1) = Au
Z(n). It is easy to see

that (∗) remains satisfied. Also, At`
Y`

(n) is related by R to As
X(n+ 1).

This completes the construction. Let T be the union of the Tn (i.e., all of the
edges which were in any of the Tn).

Claim 1. For each X ∈ P, s ∈ ω, and formula ϕ, there is an n such that As
X(n) |=

ϕ or As
X(n) |= ¬ϕ. Similarly, for each X ∈ P, s ∈ ω, and possibility Y , there is

an n such that As
X(n) ≥ Y or As

X(n) is incomparable with Y .

Proof. Let k be such that ϕ = ϕk and i be such that X = Xi. Let n+1 = 2〈s, i, k〉;
then at stage n + 1 of the construction, we set As

X(n + 1) to be a refinement of a
possibility X ′ with X ′ |= ϕ or X ′ |= ¬ϕ; by persistence, either As

X(n + 1) |= ϕ or
As

X(n+ 1) |= ¬ϕ. The proof of the second claim is similar. �

Claim 2. For each X,Y ∈ P and s, t ∈ ω with an edge from 〈s,X〉 to 〈t, Y 〉 in T ,
and for every n, there is m such that As

X(n)RAt
Y (m).

Proof. Recall that if i is the index of Y , then at each stage n + 1 = 2〈t, i, k〉 + ε
for any k and ε, we ensured that As

X(n)RAt
Y (n + 1). Thus for infinitely many n,

there is m such that As
X(n)RAt

Y (m). So each n has some n′ ≥ n and m such that
As

X(n′)RAt
Y (m); by P1, As

X(n)RAt
Y (m). This suffices to prove the claim. �

Claim 3. Let X ∈ P, s ∈ ω, and ϕ a formula. Suppose that for each m, there is
Ym with Ym |= ϕ and As

X(m)RYm. Then there are Y and t, with Y |= ϕ, such that
T (〈s,X〉, 〈t, Y 〉).

Proof. Let i be such that X = Xi and k such that ϕ = ϕk. Let n be such that
n+ 1 = 2〈s, i, k〉+ 1. Let Y be such that Y |= ϕ and As

X(n+ 1)RY ; then, for the
X ′ ≤ As

X(n+1) defined at stage n+1, X ′RY . So at stage n+1 of the construction,
we find such a Y and t, and we put an edge between 〈s,X〉 and 〈t, Y 〉 in Tn+1. �

We are now ready to define our Kripke model K = (W,S, U). For each 〈s,X〉,
let Âs

X be the downwards closure of the chain As
X . By Claim 1, this is a maximal

order ideal. Let W = {Âs
X : X ∈ P and s ∈ ω}. Define ISJ if for each X ∈ I,

there is Y ∈ J with XRY . Claim 2 implies that if in T there is an edge from
〈s,X〉 to 〈t, Y 〉, then Âs

XSÂs
Y . Define U(I, p) = T if, for some X ∈ I, V (X, p) = T;

similarly, define U(I, p) = F if, for some X ∈ I, V (X, p) = F. By Claim 1, we are
in exactly one of these two cases.

Claim 4. For each sentence ϕ, K, I |= ϕ if and only if for some X ∈ I,M, X |= ϕ.

Proof. Let 〈s,X〉 be such that I = Âs
X . Then for some Y ∈ I, M, Y |= ϕ if and

only if for some n, M, As
X(n) |= ϕ. The proof is by induction on the complexity of

the formula ϕ. If ϕ is p, then this follows from the definition of U . For a sentence
ϕ ∧ ψ,

K, Âs
X |= ϕ ∧ ψ ⇔ K, Âs

X |= ϕ and K, Âs
X |= ψ

⇔ (∃m)M, As
X(m) |= ϕ and (∃n)M, As

X(n) |= ψ

⇔ (∃n)M, As
X(n) |= ϕ and M, As

X(n) |= ψ

⇔ (∃n)M, As
X(n) |= ϕ ∧ ψ
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using persistence on the third line. For ¬ϕ,

K, Âs
X |= ¬ϕ ⇔ K, Âs

X 6|= ϕ

⇔ (∀n)M, As
X(n) 6|= ϕ

⇔ (∃n)M, As
X(n) |= ¬ϕ

since by Claim 1, for some nM, As
X(n) |= ϕ or M, As

X(n) |= ¬ϕ.
For �ϕ, suppose that for all n,M, As

X(n) 6|= �ϕ. Then, for each n, there is a Y
such that As

X(n)RY and M, Y 2 ϕ; refining Y if necessary, we may assume that
M, Y |= ¬ϕ. Then by Claim 3, there some such Y and t ∈ ω with an edge between

〈s,X〉 and 〈t, Y 〉 in T . By Claim 2, Âs
XSÂt

Y . Now K, Ât
Y |= ¬ϕ, so K, Âs

X 2 �ϕ.

Thus we have shown that if K, Âs
X |= �ϕ, then M, As

X(n) |= �ϕ for some n.
Now suppose that for some n, M, As

X(n) |= �ϕ. Let 〈t, Y 〉 be such that

Âs
XSÂt

Y . Then there is m such that As
X(n)RAt

Y (m), and so M, At
Y (m) |= ϕ.

Hence M, Ât
Y |= ϕ. Since 〈t, Y 〉 was arbitrary, K, Âs

X |= �ϕ. �

4. From possibility models to possibilizations

The goal in this section is to prove Theorem 1.2. Recall that Theorem 1.2 says
that a countable, separative, and strong possibility model in a countable language
is isomorphic to a possibilization of a countable Kripke model. We begin by proving
a stronger form of the worldization theorem under the additional hypothesis that
M is strong.

Theorem 4.1. Let M be a strong countable possibility model in a countable lan-
guage. Then there is a Kripke model K which is a worldization of M and such
that:

(1) XRY if and only if for all w with Y ∈ Φ(w) there is v with X ∈ Φ(v) and
vSw.

(2) if XRY , then there is X ′ ≥ X such that for all v′ with X ′ ∈ Φ(v′), there
is w′ with Y ∈ Φ(w′) and v′Sw′.

Proof. We modify the construction from Theorem 1.1. We will make a small modi-
fication to the trees from that Theorem. In Tn we will now have two types of edges,
red and blue. The edges we added in Theorem 1.1 will be the red edges, and the
blue edges will be added for the sake of (1) in the statement of this theorem. We
call 〈s,X〉 a red child of 〈t, Y 〉 if there is a red edge from 〈t, Y 〉 to 〈s,X〉, and a
blue child if there is a blue edge. (∗) from Theorem 1.1 will hold for the red edges:

(∗) : If 〈s,X〉 is a red child of 〈t, Y 〉 in Tn, then for all Y ′ ≥ At
Y (n),

there is X ′ ≥ As
X(n) such that Y ′RX ′.

We have a new property (†) for the blue edges:

(†) : If 〈s,X〉 is a blue child of 〈t, Y 〉 in Tn, then As
X(n)RAt

Y (n).

Note that the direction of the accessibility relation here is the opposite of that in
(∗).

The construction begins in the same way with As
X(0) = X for each X ∈ P and

s ∈ ω. Suppose that we have defined As
X(0), . . . , As

X(n) for each 〈s,X〉. Write n+
1 = 4〈s, i, k〉+ε where ε is 0, 1, 2, or 3. Let X = Xi. Let 〈t0, Y0〉, . . . , 〈t`, Y`〉, 〈s,X〉
be a path from the root 〈t0, Y0〉 of the connected component of 〈s,X〉 in Tn; some
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of the edges in this path may be red, and others may be blue. Choose Ŷ0 = At0
Y0

(n).

Now, if 〈t1, Y1〉 is a red child of 〈t0, Y0〉, using (∗) choose Ŷ1 ≥ At1
Y1

(n) such that

Ŷ0RŶ1. If 〈t1, Y1〉 is a blue child of 〈t0, Y0〉, using R choose Ŷ1 ≥ At1
Y1

(n) such

that for all Ŷ ′1 ≥ Ŷ1, there is Ŷ ′0 ≥ Ŷ0 with Ŷ ′1RŶ ′0 . Continuing in this way, we

get Ŷ0 ≥ At0
Y0

(n), Ŷ1 ≥ At1
Y1

(n), . . . , Ŷ` ≥ At`
Y`

(n), and X̂ ≥ As
X(n) such that if

〈ti+1, Yi+1〉 is a red child of 〈ti, Yi〉, then ŶiRŶi+1, and if 〈ti+1, Yi+1〉 is a blue child

of 〈ti, Yi〉, then for all Ŷ ′i+1 ≥ Ŷi+1, there is Ŷ ′i ≥ Ŷi with Ŷ ′i+1RŶ ′i .

Recall that n+ 1 = 4〈s, i, k〉+ ε. Now for each ε, we will define X̃ ≥ X̂.

ε = 0: Same as Theorem 1.1.
ε = 1: Same as Theorem 1.1, adding a red edge.
ε = 2: Let Z = Xk. If ZRX̂, then choose u such that 〈u, Z〉 has no edge in Tn,

and is greater than any other pair connected to any edge in Tn. Let Tn+1

be Tn with an additional blue edge from 〈s,X〉 to 〈u, Z〉.
ε = 3: Let k = 〈k1, k2, j〉. Let Z1 = Xk1

and Z2 = Xk2
. The j here just ensures

that we visit this requirement infinitely many times. If Z1 is such that
for all Z ′1 ≥ Z1 there is Z ′2 ≥ Z2 with Z ′1RZ ′2, and Z1 ≤ X̂, then choose

Z ′2 ≥ Z2 such that X̂RZ ′2. Using R, choose X̃ ≥ X̂ such that for all

X̃ ′ ≥ X̃ there is Z ′′2 ≥ Z ′2 with X̃ ′RZ ′′2 . Choose u such that 〈u, Z ′2〉 has no
edge in Tn, and is greater than any other pair connected to any edge in Tn.
Let Tn+1 be Tn with an additional red edge from 〈s,X〉 to 〈u, Z ′2〉.

Now we need to recover (∗) and (†). If 〈s,X〉 is a red child of 〈t`, Y`〉, then note

that R relates Ŷ` to X̂ by P2. Using R, choose Ỹ` ≥ Ŷ` such that for all Y ′′` ≥ Ỹn,

there is X ′′ ≥ X̃ with Y ′′RX ′′. Thus we have recovered (∗) between 〈s,X〉 and

〈t`, Y`〉. If 〈s,X〉 is a blue child of 〈t`, Y`〉, then by choice of Ŷ`, there is Ỹ` ≥ Ŷ`
such that X̃RỸ`. Thus we have recovered (†) between 〈s,X〉 and 〈t`, Y`〉. Continue

in this way to define Ỹ0, . . . , Ỹ`. Set Ati
Yi

(n+ 1) = Ỹi. Set As
X(n+ 1) = X̃. For each

other 〈u, Z〉, set Au
Z(n+ 1) = Au

Z(n). Note that both (∗) and (†) have the property
that if they held between 〈u, Z〉 and its child 〈u′, Z ′〉 at stage n, Au

Z(n+1) ≥ Au
Z(n),

and Au′

Z′(n+1) = Au′

Z′(n), then (∗) and (†) hold between 〈u, Z〉 and 〈u′, Z ′〉 at stage
n+ 1. Thus (∗) and (†) both hold for Tn+1.

Define the model K in the same way as before. The proofs of the claims in
Theorem 1.1 still hold for the red edges and so K is a worldization of M via Φ.
Also, if there is a blue edge from 〈s,X〉 to 〈t, Y 〉 in T , then (†) implies that Ât

Y SÂs
X .

We now have two new claims.

Claim 1. XRY if and only if for all w with Y ∈ Φ(w) there is v with X ∈ Φ(v)
and vSw.

Proof. Suppose that XRY . Let w = Âs
Z be such that Y ∈ Φ(w). Then, for

sufficiently large n, XRAs
Z(n). So at some stage, we put a blue edge from 〈s, Z〉

to 〈u,X〉. Then Âu
XSw. Note that X ∈ Φ(Âu

XS).
Suppose that ¬XRY . Then by R-refinability, there is Y ′ ≥ Y such that for all

Y ′′ ≥ Y ′, ¬XRY ′′. Fix w with Y ′ ∈ Φ(w). Then it follows from (W5) that for all
v with X ∈ Φ(v), ¬vSw. �

Claim 2. If XRY , then there is X ′ ≥ X such that for all v′ with X ′ ∈ Φ(v′), there
is w′ with Y ∈ Φ(w′) and v′Sw′.
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Proof. Suppose that XRY . By R there is X ′ ≥ X such that for all X ′′ ≥ X ′ there
is Y ′ ≥ Y with X ′′RY ′.

Suppose that v′ is such that X ′ ∈ Φ(v′). Choose s and Z such that v′ = Âs
Z .

Then for sufficiently large n, As
Z(n) ≥ X ′. Let i, k1, and k2 be such that Z = Xi,

X ′ = Xk1
, and Y = Xk2

. Then at stage n = 〈s, i, 〈k1, k2, j〉〉+3 for some sufficiently
large j (large enough that As

Z(n) ≥ X ′), we put into Tn+1 a red edge from 〈s, Z〉
to 〈u, Y ′〉 for some u and Y ′ ≥ Y . Let w′ = Âu

Y ′ . Then Y ∈ Φ(w′) and v′Sw′. �

This completes the proof. �

We will now prove Theorem 1.2: up to isomorphism of possibility models, every
countable, separative, and strong possibility model in a countable language is the
possibilization of a Kripke model.

Proof of Theorem 1.2. LetM = (P,R,≤, V ) be a countable, separative, and strong
possibility model. Using Theorem 4.1, let K = (W,S, U) be a worldization of M
via Φ: P → ℘(W). So we have (1) and (2) of Theorem 4.1.

Given X ∈ P, let SX = {w ∈ W : X ∈ Φ(w)}. We claim that SX = SY if and
only if X = Y ; this is where we use the fact that M is separative. Suppose that
SX = SY . We claim that X 's Y where 's is defined as in Definition 2.13. If
X ′ ≥ X, then there is v such that X ′ ∈ Φ(v). So X ∈ Φ(v) and since SX = SY , Y ∈
Φ(v). So there is X ′′ ∈ Φ(v) with X ′′ ≥ X ′, Y . Thus X ≥s Y . By interchanging
X and Y , we see that X 's Y . Since M is separative, X = Y as desired.

Identify X ∈ P with SX . We can interpret R, ≤, and V as acting on the
sets SX . Let M′ be the model with possibilities SX . We claim that M′ is a
possibilization of K. In verifying properties (A1)-(A4) of a possibilization, we will
write X interchangeably with SX (so that we write v ∈ X for v ∈ SX).

(A1): We must check each of (i)-(viii).
(i): Given v 6= w, by (W3) there is X with v ∈ X and w /∈ X.
(ii): Given X and v /∈ X, suppose to the contrary that there is no Y with

v ∈ Y and X ∩ Y = ∅. Then there is an order ideal containing
Φ(v) = {Y : v ∈ Y } and X. This contradicts (W1).

(iii): Given v ∈ X and K, v |= ϕ, by (W4) there is Y with v ∈ Y and
M, Y |= ϕ.

(iv): Suppose that v ∈ S[X]. Let w ∈ X be such that wSv. Then by
(W5) there is Y with v ∈ Y and XRY . By (1) in the statement of
Theorem 4.1, Y ⊆ S[X].

(v): Suppose that Y * S[X]. Then there is w ∈ Y such that there is no
v ∈ X with vSw. By (1) of Theorem 4.1, ¬XRY . Since M is strong,
there is Y ′ ≥ Y such that for all Y ′′ ≥ Y ′, ¬XRY ′′. We claim that
Y ′ ∩ S[X] = ∅. Suppose to the contrary that v ∈ X and w ∈ Y ′ are
such that vSw. By (W5), there is Y ′′ with w ∈ Y ′′ and XRY ′′. By
(W1) and P2, we may assume that Y ′′ ≥ Y ′. But this contradicts the
choice of Y ′.

(vi): Given Y with ♦Y non-empty, let v and w ∈ Y be such that vSw.
Choose X such that v ∈ X. By (W5) and (W1), there is Y ′ ≥ Y with
w ∈ Y ′ and XRY . By (2) in the statement of Theorem 4.1, there is
X ′ ≥ X such that for all v′ ∈ X, there is w′ ∈ Y with v′Rw′. So
X ⊆ ♦Y .
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(vii): Suppose that v ∈ X ∩ Y . Then by (W1), there is Z with v ∈ Z and
Z ≥ X,Y , i.e., Z ⊆ X ∩ Y .

(viii): Suppose that ¬vSw. Then there is X with v ∈ X such that for all
Y with w ∈ Y , ¬XRY . We claim that w /∈ S[X]. If to the contrary
we did have w ∈ S[X], then there would be v′ ∈ X with v′Sw. But
then since v′ ∈ X we would have that for all Y with w ∈ Y , X ′RY .
This is a contradiction.

(A2): This follows from (1) in the statement of Theorem 4.1.
(A3): If X ≥ Y , then by (W1), whenever v ∈ X, v ∈ Y . So X ⊆ Y .
(A4): If V (X, p) = T, then it follows immediately from (W4) that for all w ∈

X, U(w, p) = T. If, for all w ∈ X, U(w, p) = T, then we argue that
V (X, p) = T as follows. Suppose not; by Refinability, there is X ′ ≥ X
with V (X ′, p) = F. Then taking v ∈ X ′, U(v, p) = F. But v ∈ X, so this
gives a contradiction. The same works for F. �

The following proposition should be thought of as a converse to Theorem 1.2.

Proposition 4.2. Let K = (W,S, U) be a Kripke model and let M = (P,R,≤, V )
be a possibilization of K. Then K is a worldization of M.

Proof. Define Φ : W → ℘(P) by letting Φ(w) be the set of possibilities X with
w ∈ X. We must check (W1)-(W5):

(W1) For each world w ∈ W, Φ(w) is a maximal order ideal as:
(a) if w ∈ X ∈ P and X ⊆ Y ∈ P, then w ∈ Y ;
(b) if w ∈ X ∈ P and w ∈ Y ∈ P, by (vii) there is Z ∈ P with w ∈ Z ⊆

X ∩ Y ;
(c) if w /∈ X ∈ P, then by (ii) there is Y ∈ P with w ∈ Y and X ∩ Y =

∅, so that X and Y have no common refinement and hence Φ(w) is
maximal among order ideals.

(W2) This follows from the fact that each X ∈ P is non-empty.
(W3) This follows from (i).
(W4) This is just Proposition 2.11.
(W5) Fix w, v ∈ W. First suppose that vSw. Let X ∈ P be such that v ∈ X.

Then since w ∈ S[X], there is Y ∈ P with w ∈ Y ⊆ S[X]. Thus XRY .
On the other hand, suppose that ¬vSw. By (viii) there is X ∈ P with

v ∈ X and w /∈ S[X]. Then for all Y with w ∈ Y , Y * S[X] and so ¬XRY .

�

5. Uncountable models

Theorem 1.1 required that the possibility model and the language were countable.
We will give two examples to show that this assumption was necessary. We will
exhibit two possibility models with no worldizations, first with a countable set of
possibilities and uncountably many propositional variables, and second with an
uncountable set of possibilities and countably many propositional variables.

Proposition 5.1. There is a possibility modelM with countably many possibilities
in a language with uncountably many propositional variables which does not have
any worldizations.

Proof. Let 2<ω be the infinite binary tree, that is, the elements of 2<ω are the finite
string of 0’s and 1’s. Let 2ω be the set of infinite binary strings, which we view
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as paths through 2<ω. Let P be a set of continuum-many propositional variables.
Let f : P → 2ω be a bijection between P and 2ω. Let P = 2<ω. The refinement
relation ≤ is the natural extension relation on strings. The accessibility relation R
is trivially empty. Define V (σ, p) as follows. Let π = f(p). Either σ is an initial
segment of π, in which case we set V (σ, p) = ?, or some entry of σ differs from π.
If, at the first such entry, σ has a 1, set V (σ, p) = T, and otherwise if it is 0, set
V (σ, p) = F. ThenM = (P,R,≤, V ) is a possibility model. Every ascending chain
in P is corresponds to a path π through 2ω, and this path does not decide whether
p = f−1(π) is true or false. Thus by (W4) none of the ascending chains in P can
be in a worldization. By (W2), there are no worldizations of this model. �

Now we will give the second example, which is more complicated than the first.

Proposition 5.2. There is a possibility model M with uncountably many possibil-
ities in a language with countably many propositional variables which does not have
any worldizations.

Proof. By a tree, we now mean a poset (T,-) such that {b : b ≺ a} is well-ordered
for each a. We call the order type of {b : b ≺ a} the height of a, height(a). The
height of a tree is the supremum of the heights of its elements. A path through a
tree is a linearly ordered set in the tree closed under predecessor. Let (T,-) be a
well-pruned Aronszajn tree, that is, a tree with:

(1) height ω1,
(2) every element of T has countable height,
(3) every path in T is countable,
(4) for each element a of height α, and each β with ω1 > β > α, there is an

element b % a of height β.

The first three properties are what it means to be an Aronszajn tree, and the last
says that the tree is well-pruned (see [Kun80, pp. 69-72]). Let P be the disjoint
union of ω1 and T . Define the refinement relation ≤ on P by making it the natural
ordering on ω1, and the tree ordering on T , but having elements of ω1 and of T be
incomparable. Set αRσ if α ∈ ω1 and σ ∈ T and height(σ) ≥ α. We will have one
propositional variable p. Set V (X, p) = T for all X ∈ P. Let M = (P,R,≤, V ).

For P1, if αRσ and β ≤ α, then height(σ) ≥ α ≥ β and so βRσ. For P2, if
αRσ and τ % σ, then height(τ) ≥ height(σ) ≥ α and so αRτ . For R, suppose
that αRσ so that height(σ) ≥ α. Then for all β ≥ α, since T is well-pruned there
is τ % σ of height at least β, and hence βRτ . Refinement and Persistence are
clear. Thus M is a possibility model.

Now we claim that there is no worldization of M. Suppose that there was, say
K = (W,S, U). Then U(w, p) = T for all w by (W4). By (W2), let w be such
that 0 ∈ Φ(w) (where 0 ∈ ω1); in fact, by (W1) we get Φ(w) = ω1. Then, since
0R∅ (where ∅ ∈ T is the empty string) and V (∅, p) = T, M, 0 |= ♦p. By (W4),
K, w |= ♦p. Let v be such that wSv and K, v |= p. By (W1), Φ(v) ⊆ T is a path
through T . Since T is an Aronszajn tree, there is a countable bound on the height
of the elements of Φ(v). On the other hand, by (W5), for each α ∈ ω1, there is
σ ∈ Φ(v) with αRσ and hence height(σ) ≥ α, so that the heights of elements of Φ(v)
are unbounded below ω1. This is a contradiction. So M has no worldization. �
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6. Frames

6.1. No Worldizations of Basic Possibility Frames. Recall from Definition
2.1 the definition of a basic possibility frame. In this section we will consider
worldizations on the level of frames. By a frame-worldization of a possibility frame
F , we mean a Kripke frame K satisfying (W1)-(W3) and (W5) of the definition
of a worldization, and such that any possibility model based on F gives rise to a
model-worldization based on K.

Definition 6.1. Let G = (P,R,≤) be a (basic) possibility frame and let F =
(W,S) be a Kripke model. F is a frame-worldization of G via an embedding
Φ : W → ℘(P) which assigns to each total world w ∈ W a set of possibilities
Φ(w) ⊆ P if:

(W1) for each world w ∈ W, Φ(w) is a maximal order ideal, i.e.,
(a) Φ(w) is downwards-closed under refinement,
(b) any two elements of Φ(w) have a common refinement in Φ(w), and
(c) Φ(w) is maximal with these two properties;

(W2) for each possibility X ∈ P, there is a world w ∈ W such that X ∈ Φ(w);
(W3) any two distinct total worlds v, w ∈ W are separated by possibilities, that

is, there is X ∈ Φ(v) \ Φ(w); and
(W5) for each pair of worlds w, v ∈ W, wSv if and only if for each X ∈ Φ(w)

there is Y ∈ Φ(v) such that XRY ;

and such that for any possibility model M based on G, there is a Kripke model K
based on F such that K is a worldization of M via Φ (and vice versa).

There are basic possibility frames without a worldization. The issue is that in
the construction of Theorem 1.1, at some stages we extended a possibility X to
a further refinement X ′ which decided some formula ϕ. This required us to have
countably many definable sets of possibilities; but there may be uncountably many
sets of possibilities which are definable in some model based on a countable frame.

Proposition 6.2. There is a countable basic frame F with no frame-worldization.

Proof. Consider the following example of a basic possibility frame G which is similar
to Proposition 5.1. Let P be the infinite binary tree 2<ω. The accessibility relation
R is trivially empty, and ≤ is the natural relation on extension of strings. We claim
that there cannot possibly be a frame-worldization of G = (P,R,≤).

Any frame-worldization F would have to contain, among its total worlds, some
world w corresponding to an ascending chain through P. This ascending chain
corresponds to some infinite path π through the binary tree. Now, using a single
propositional variable, we can define a valuation V to get a possibility model M
based on G. Define V (σ, p) = T if the first place σ differs from π, it has an entry of 1,
and V (σ, p) = F if σ first differs from π with an entry of 0. If σ is an initial segment of
π, then set V (σ, p) = ?. Then V satisfies Persistence and Refinability. However,
the ascending chain π never decides p, and so there is no model-worldization ofM
based on F . Thus F is not a frame-worldization of G. �

6.2. Worldizations of General Possibility Frames. If we are willing to work
with general frames, then we can make a worldization construction. Holliday [Hol15,
Definition 2.21] has a natural definition of a general possibility frame.
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Definition 6.3. F = 〈P,R,≤,A〉 is a (general) possibility frame if 〈P,R,≤〉 is a
basic possibility frame and A ⊆ ℘(P), the set of admissible propositions, satisfies:

(1) ∅,P ∈ A;
(2) Given A,B ∈ A, A ∩B ∈ A;
(3) Given A ∈ A, A∗ = {X ∈ P : ∀Y ≥ X,Y /∈ A} ∈ A;
(4) Given A ∈ A, �A = {X ∈ P : (∀Y )XRY ⇒ Y ∈ A} ∈ A;
(5) Each A ∈ A is regular open in the upset topology.

A set A is regular open set in the upset topology if and only if it satisfies the
following conditions of persistence and refinability for sets:

(i) for each X ∈ A and X ′ ≥ X, X ′ ∈ A, and
(ii) for each X ∈ P, if X /∈ A, then there is X ′ ≥ X such that for all X ′′ ≥ X ′,

X ′′ /∈ A.

A possibility model M = 〈P,R,≤, V 〉 is based on F = 〈P,R,≤,A〉 if {X :
V (X, p) = T} ∈ A for each X and p.

Condition (3) corresponds to the usual condition (for general Kripke frames) of
closure under complements. (For a review of general Kripke frames, see Section 5.5
of [BdRV01].) If M is a possibility model based on a general frame F , then the
sets of possibilities definable in M are all admissible in F

If F is a general possibility frame, (pi)i∈I are propositional variables, and (Ai)i∈I
are admissible sets, then setting V (X, pi) = T if X ∈ Ai, V (X, pi) = F if X ∈
A∗i , and V (X, pi) = ? otherwise determines a possibility model based on F . The
requirement that each admissible set be regular open ensures that Persistence and
Refinability are satisfied.

We can define frame-worldizations of general possibility frames as follows.

Definition 6.4. Let G = (P,R,≤,A) be a general possibility frame and let
F = (W,S,B) be a general Kripke frame. F is a frame-worldization of G via
an embedding Φ : W → ℘(P) which assigns to each total world w ∈ W a set of
possibilities Φ(w) ⊆ P if:

(W1) for each world w ∈ W, Φ(w) is a maximal order ideal, i.e.,
(a) Φ(w) is downwards-closed under refinement,
(b) any two elements of Φ(w) have a common refinement in Φ(w), and
(c) Φ(w) is maximal with these two properties;

(W2) for each possibility X ∈ P, there is a world w ∈ W such that X ∈ Φ(w);
(W3) any two distinct total worlds v, w ∈ W are separated by possibilities, that

is, there is X ∈ Φ(v) \ Φ(w); and
(W5) for each pair of worlds w, v ∈ W, wSv if and only if for each X ∈ Φ(w)

there is Y ∈ Φ(v) such that XRY ;

and such that for any possibility model M based on G, there is a Kripke model K
based on F such that K is a worldization of M via Φ (and vice versa).

(Note this is almost word-for-word the same definition as for basic frames, though
some of the words, such as “based on”, now have a different meaning.)

We now prove Theorem 1.3, which says that a countable possibility frame with
countably many admissible sets has a frame-worldization.

Proof of Theorem 1.3. Let G = (P,R,≤,A) be a countable general possibility
frame with countably many admissible sets. For each A ∈ A, we will have a
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propositional variable pA. DefineM a possibility model based on G with valuation
V (X, pA) = T if X ∈ A, V (X, pA) = F if X ∈ A∗, and V (X, pA) = ? otherwise.
M is a countable model in a countable language. By Theorem 1.1, M has a

worldization K = (W,S, U), say via Φ. Let B be the collection of sets

BA = {w ∈ W : K, w |= pA} = {w ∈ W : (∃X ∈ Φ(w))X ∈ A}.

Claim 1. F = (W,S,B) is a general Kripke frame.

Proof. U(w, p∅) = F for all w ∈ W, so B∅ = ∅ ∈ B.
To see that B is closed under complements, we show that for A ∈ A, the comple-

ment of BA is B∗A. We must show that for w ∈ W, if K, w 2 pA, then K, w |= pA∗ .
Since K, w |= ¬pA, there is some X ∈ Φ(w) such that M, X |= ¬pA. So for all
Y ≥ X, Y /∈ A. Thus X ∈ A∗, and so M, X |= pA∗ . But then K, w |= pA∗ .

Now we will see that B is closed under intersections. Given A,A′ ∈ A, we will
show that BA ∩BA′ = BA∩A′ . Suppose that w ∈ BA ∩BA′ . Then K, w |= pA ∧ p′A,
and so there are X ∈ Φ(w) with X ∈ A and X ′ ∈ Φ(w) with X ′ ∈ A. But then
there is X ′′ ∈ Φ(w) with X ′′ ≥ X,X ′, and so X ′′ ∈ A∩A′. Hence M, X |= pA∩A′ ,
and so K, w |= pA∩A′ . Thus x ∈ BA∩A′ . The other direction is similar.

Finally, given A ∈ A, we will show that �BA = {w ∈ W : (∀v)wSv ⇒ v ∈ BA}
is equal to B�A. First, suppose that for all v with wSv, v ∈ BA. Thus for all such
v, K, v |= pA. So K, w |= �pA. There must be some X ∈ Φ(w) with M, X |= �pA.
So for all Y with XRY , M, Y |= pA and so X ∈ �A. Thus M, X |= p�A and so
K, w |= p�A. The other direction is similar. �

Finally, we want to check that F is a frame-worldization of G via Φ. Since K is
a worldization of M via Φ, it suffices to check that for each possibility model M′
based on G, there is a Kripke model K′ based on F such that K′ is a worldization
of M′ via Φ (and that for each Kripke model K′ based on F , there is a possibility
model M′ based on G such that K′ is a worldization of M′ via Φ).

Claim 2. For each possibility modelM′ based on G, there a Kripke model K′ based
on F such that K′ is a worldization of M′ via Φ.

Proof. LetM′ = (P,R,≤, V ′) be a possibility model based on G. Define a valuation
U ′ on F as follows. For each propositional variable q, let Aq ∈ A be such that
Aq = {X :M′, X |= q}. Then define U ′(w, q) = T if w ∈ BAq

, and U ′(w, q) = F if
w /∈ BAq

. So K′ = (W,S, U ′) a Kripke model based on F .
Note that we have both that M′, X |= q if and only if M, X |= pAq

, and that
K′, w |= q if and only if K, w |= pAq . Given a formula ϕ in the language of M′, we
can translate ϕ to a formula ϕ∗ in the language of M by replacing each variable q
with pAq

. Then M′, X |= ϕ if and only if M, X |= ϕ∗, and K′, w |= ϕ if and only
if K, w |= ϕ∗. Since K is a worldization of M, it follows that K′ is a worldization
of M′. �

Claim 3. For each Kripke model K′ based on F , there a possibility modelM′ based
on G such that K′ is a worldization of M′ via Φ.

Proof. Let K′ = (W,S, U) be a Kripke model based on F . Define a valuation
V ′ on G as follows. For each propositional variable q, let Aq ∈ A be such that
BAq

= {w : K′, w |= q}. Then define V ′(X, q) = T if X ∈ Aq, and V ′(X, q) = F if
X /∈ Aq. The rest of the argument is similar to the previous claim. �
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So we have shown that F is a frame-worldization of G, completing the theorem. �

A possibility modelM = (P,R,≤, V ) for a countable language induces a general
possibility frame G = (P,R,≤,A) with a countable set A of admissible sets, namely
the sets definable by formulas in M. Then, applying Theorem 1.3 to G, we get a
frame-worldization F of G, and by the last sentence of Definition 6.4, there is a
worldization ofM based on F . Thus Theorem 1.3 implies our earlier Theorem 1.1
on worldizations of countable possibility models in a countable language.
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