TRANSLATING THE CLASS OF ABELIAN p-GROUPS INTO AN ELEMENTARY FIRST-ORDER THEORY

MATTHEW HARRISON-TRAINOR

ABSTRACT. The class of abelian p-groups are an example of some very interesting phenomena in computable structure theory and descriptive set theory. We will give an elementary first-order theory T_p whose models are each bi-interpretable with the disjoint union of an abelian p-group and a pure set (and so that every abelian p-group is bi-interpretable with a model of T_p) using computable infinitary formulas. This answers a question of Knight by giving an example of an elementary first-order theory with the following property: The computable infinitary theory of any model (whether hyperarithmetic or not) with computable Scott rank is \aleph_0 -categorical. It also gives a new example of an elementary first-order theory whose isomorphism problem is Σ_1^1 -complete but not Borel complete.

1. Introduction

The class of abelian p-groups is a well-studied example in computable structure theory. A simple compactness argument shows that abelian p-groups are not axiomatizable by an elementary first-order theory, but they are definable by the conjunction of the axioms for abelian p-groups (which are first-order $\forall \exists$ sentences) and the infinitary Π_2^0 sentence which says that every element is torsion of order some power of p.

Abelian p-groups are classifiable by their Ulm sequences [Ulm33]. Due to this classification, abelian p-groups are examples of some very interesting phenomena in computable structure theory and descriptive set theory. We will define a theory T_p whose models behave like the class of abelian p-groups, giving a first-order example of these phenomena. In particular, Theorem 1.6 below answers a question of Knight.

- 1.1. Infinitary Formulas. The infinitary logic $\mathcal{L}_{\omega_1\omega}$ is the logic which allows countably infinite conjunctions and disjunctions but only finite quantification. If the conjunctions and disjunctions of a formula φ are all over computable sets of indices for formulas, then we say that φ is computable. We use $\Sigma_{\alpha}^{\text{in}}$ and Π_{α}^{in} to denote the classes of all infinitary Σ_{α} and Π_{α} formulas respectively. We will also use $\Sigma_{\alpha}^{\text{c}}$ and Π_{α}^{c} to denote the classes of computable Σ_{α} and Π_{α} formulas, where $\alpha < \omega_1^{CK}$ the least non-computable ordinal. See Chapter 6 of [AK00] for a more complete description of computable formulas.
- 1.2. **Bi-Interpretability.** One way in which we will see that the models of T_p are essentially the same as abelian p-group is using bi-interpretations using infinitary formulas [Mon, HTMMM, HTMM]. A structure \mathcal{A} is infinitary interpretable in a structure \mathcal{B} if there is an interpretation of \mathcal{A} in \mathcal{B} where the domain of the interpretation is allowed to be a subset of $\mathcal{B}^{<\omega}$ and where all of the sets in the interpretation are definable using infinitary formulas. This differs from the classical

notion of interpretation, as in model theory [Mar02, Definition 1.3.9], where the domain is required to be a subset of \mathcal{B}^n for some n, and the sets in the interpretation are first-order definable.

Definition 1.1. We say that a structure $\mathcal{A} = (A; P_0^{\mathcal{A}}, P_1^{\mathcal{A}}, ...)$ (where $P_i^{\mathcal{A}} \subseteq A^{a(i)}$) is infinitary interpretable in \mathcal{B} if there exists a sequence of relations $(\mathcal{D}om_{\perp}^{\mathcal{B}}, \sim$ R_0, R_1, \ldots , definable using infinitary formulas (in the language of \mathcal{B} , without parameters), such that

- (1) $\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}} \subseteq \mathcal{B}^{<\omega}$, (2) ~ is an equivalence relation on $\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}$, (3) $R_i \subseteq (B^{<\omega})^{a(i)}$ is closed under ~ within $\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}$,

and there exists a function $f_A^{\mathcal{B}}: \mathcal{D}om_A^{\mathcal{B}} \to \mathcal{A}$ which induces an isomorphism:

$$(\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}}/\sim; R_0/\sim, R_1/\sim, ...) \cong (A; P_0^{\mathcal{A}}, P_1^{\mathcal{A}}, ...),$$

where R_i/\sim stands for the \sim -collapse of R_i .

Two structures \mathcal{A} and \mathcal{B} are infinitary bi-interpretable if they are each effectively interpretable in the other, and moreover, the composition of the interpretations i.e., the isomorphisms which map \mathcal{A} to the copy of \mathcal{A} inside the copy of \mathcal{B} inside \mathcal{A} , and \mathcal{B} to the copy of \mathcal{B} inside the copy of \mathcal{A} inside \mathcal{B} —are definable.

Definition 1.2. Two structures \mathcal{A} and \mathcal{B} are infinitary bi-interpretable if there are infinitary interpretations of each structure in the other as in Definition 1.1 such that the compositions

$$f_{\mathcal{B}}^{\mathcal{A}} \circ \tilde{f}_{\mathcal{A}}^{\mathcal{B}} : \mathcal{D}om_{\mathcal{B}}^{(\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}})} \to \mathcal{B}$$
 and $f_{\mathcal{A}}^{\mathcal{B}} \circ \tilde{f}_{\mathcal{B}}^{\mathcal{A}} : \mathcal{D}om_{\mathcal{A}}^{(\mathcal{D}om_{\mathcal{B}}^{\mathcal{A}})} \to \mathcal{A}$

are definable in \mathcal{B} and \mathcal{A} respectively. (Here, we have $\mathcal{D}om_{\mathcal{B}}^{(\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}})} \subseteq (\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}})^{<\omega}$, and $\tilde{f}_{\mathcal{A}}^{\mathcal{B}}: (\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}})^{<\omega} \to \mathcal{A}^{<\omega}$ is the obvious extension of $f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D}om_{\mathcal{A}}^{\mathcal{B}} \to \mathcal{A}$ mapping $\mathcal{D}om_{\mathcal{B}}^{(\mathcal{D}om_{\mathcal{A}}^{\mathcal{B}})}$ to $\mathcal{D}om_{\mathcal{B}}^{\mathcal{A}}$.)

If we ask that the sets and relations in the interpretation (or bi-interpretation) be (uniformly) relatively intrinsically computable, i.e., definable by both a Σ_1^c formula and a Π_1^c formula, then we say that the interpretation (or bi-interpretation) is effective. Any two structures which are effectively bi-interpretable have all of the same computability-theoretic properties; for example, they have the same degree spectra and the same Scott rank. See [Mon, Lemma 5.3].

Here, we will use interpretations which use (lightface) Δ_2^c formulas. It is no longer true that any two structures which are Δ_2^c -bi-interpretable have all of the same computability-theoretic properties, but it is true, for example, that any two such structures either both have computable, or both have non-computable, Scott rank.

Theorem 1.3. Each abelian p-group is effectively bi-interpretable with a model of T_p . Each model of T_p is Δ_2^{c} -bi-interpretable with the disjoint union of an abelian p-group and a pure set.

This theorem will follow from the constructions in Sections 3 and 4. Given a model \mathcal{M} of T_p , \mathcal{M} is bi-interpretable with an abelian p-group G and a pure set. The domain of the copy of G inside of M is definable by a Σ_1^c formula but not by a Π_1^c formula. This is the only part of the bi-interpretation which is not effective.

- 1.3. Classification via Ulm Sequences. Let G be an abelian group. For any ordinal α , we can define $p^{\alpha}G$ by transfinite induction:
 - $p^0G = G$;
 - $p^{\alpha+1}G = p(p^{\alpha}G)$;
 - $p^{\beta}G = \bigcap_{\alpha < \beta} p^{\alpha}G$ if β is a limit ordinal.

These subgroups $p^{\alpha}G$ form a filtration of G. This filtration stabilizes, and we call the smallest ordinal α such that $p^{\alpha}G = p^{\alpha+1}G$ the length of G. We call the intersection $p^{\infty}G$ of these subgroups, which is a p-divisible group, the p-divisible part of G. Any countable p-divisible group is isomorphic to some direct product of the Prüfer group

$$\mathbb{Z}(p^{\infty}) = \mathbb{Z}[1/p, 1/p^2, 1/p^3, \ldots]/\mathbb{Z}.$$

Denote by G[p] the subgroup of G consisting of the p-torsion elements. The α th Ulm invariant $u_{\alpha}(G)$ of G is the dimension of the quotient

$$(p^{\alpha}G)[p]/(p^{\alpha+1}G)[p]$$

as a vector space over $\mathbb{Z}/p\mathbb{Z}$.

Theorem 1.4 (Ulm's Theorem, see [Fuc70]). Let G and H be countable abelian p-groups such that for every ordinal α their α th Ulm invariants are equal, and the p-divisible parts of G and H are isomorphic. Then G and H are isomorphic.

- 1.4. Scott Rank and Computable Infinitary Theories. Scott [Sco65] showed that if \mathcal{M} is a countable structure, then there is a sentence φ of $\mathcal{L}_{\omega_1\omega}$ such that \mathcal{M} is, up to isomorphism, the only countable model of φ . We call such a sentence a Scott sentence for M. There are many different definitions [AK00, Sections 6.6 and [6.7] of the Scott rank of \mathcal{M} , which differ only slightly in the ranks they assign. The one we will use, which comes from [Mon15], defines the Scott rank of A to be the least ordinal α such that \mathcal{A} has a $\Pi_{\alpha+1}^{\text{in}}$ Scott sentence. We denote the Scott rank of a structure \mathcal{A} by $SR(\mathcal{A})$. It is always the case that $SR(\mathcal{A}) \leq \omega_1^{\mathcal{A}} + 1$ [Nad74]. We could just as easily use any of the other definitions of Scott rank; for all of these definitions, given a computable structure A:
 - (1) \mathcal{A} has computable Scott rank if and only if there is a computable ordinal α such that for all tuples \bar{a} in \mathcal{A} , the orbit of \bar{a} is defined by a computable Σ_{α} formula.
 - (2) \mathcal{A} has Scott rank ω_1^{CK} if and only if for each tuple \bar{a} , the orbit is defined by a computable infinitary formula, but for each computable ordinal α , there is a tuple \bar{a} whose orbit is not defined by a computable Σ_{α} formula.
 - (3) \mathcal{A} has Scott rank $\omega_1^{CK} + 1$ if and only if there is a tuple \bar{a} whose orbit is not defined by a computable infinitary formula.

Given a structure \mathcal{M} , define the computable infinitary theory of \mathcal{M} , $\operatorname{Th}_{\infty}(\mathcal{M})$, to be collection of computable $\mathcal{L}_{\omega_1\omega}$ sentences true of \mathcal{M} . We can ask, for a given structure \mathcal{M} , whether $\mathrm{Th}_{\infty}(\mathcal{M})$ is \aleph_0 -categorical, or whether there are other countable models of $\mathrm{Th}_{\infty}(\mathcal{M})$. For \mathcal{M} a hyperarithmetic structure:

- (1) If $SR(\mathcal{M}) < \omega_1^{CK}$, then $Th_{\infty}(\mathcal{M})$ is \aleph_0 -categorical. Indeed, \mathcal{M} has a computable Scott sentence [Nad74].
- (2) If $SR(\mathcal{M}) = \omega_1^{CK}$, then $Th_{\infty}(\mathcal{M})$ may or may not be \aleph_0 -categorical [HTIK]. (3) If $SR(\mathcal{M}) = \omega_1^{CK} + 1$, then $Th_{\infty}(\mathcal{M})$ is not \aleph_0 -categorical as \mathcal{M} has a non-principal type which may be omitted.

In the case of abelian p-groups, we can say something even when we replace the assumption that \mathcal{M} is hyperarithmetic with the assumption that $\omega_1^G = \omega_1^{CK}$:

Theorem 1.5. Let G be an abelian p-group with $\omega_1^{CK} = \omega_1^G$. Then:

- (1) G is the only countable model of $\operatorname{Th}_{\infty}(G)$ with $\omega_1^G = \omega_1^{CK}$, and (2) if $\operatorname{SR}(G) < \omega_1^{CK} = \omega_1^G$, then $\operatorname{Th}_{\infty}(G)$ is \aleph_0 -categorical.

This theorem is well-known but as far as we are aware does not appear in the literature. We will give a proof in Section 2. We also note that there are indeed non-hyperarithmetic abelian p-groups G with $SR(G) < \omega_1^{CK}$.

Knight asked whether there was a (non-trivial) first-order theory with this same property. By a non-trivial example, we mean that the elementary first-order theory should have non-hyperarithmetic models. Our theory T_p is such an example.

Theorem 1.6. Given $\mathcal{M} \models T_p$ with $\omega_1^{CK} \models \omega_1^{\mathcal{M}}$:

- (1) \mathcal{M} is the only countable model of $\operatorname{Th}_{\infty}(\mathcal{M})$ with $\omega_1^{\mathcal{M}} = \omega_1^{CK}$, and (2) if $\operatorname{SR}(\mathcal{M}) < \omega_1^{CK} = \omega_1^{\mathcal{M}}$, then $\operatorname{Th}_{\infty}(\mathcal{M})$ is \aleph_0 -categorical.

Proof. Let \mathcal{M} be a model of T_p . Now \mathcal{M} is bi-interpretable, using computable infinitary formulas, with the disjoint union of an abelian p-group G and a pure set. Thus \mathcal{M} inherits these properties from G.

Of course, there will be non-hyperarithmetic models of T_p with Scott rank below ω_1^{CK} .

1.5. Borel Incompleteness. In their influential paper [FS89], Friedman and Stanley introduced Borel reductions between invariant Borel classes of structures with universe ω in a countable language. Such classes are of the form $\operatorname{Mod}(\varphi)$, the set of models of φ with universe ω , for some $\varphi \in \mathcal{L}_{\omega_1 \omega}$. A Borel reduction from $\text{Mod}(\varphi)$ to $\operatorname{Mod}(\psi)$ is a Borel map $\Phi: \operatorname{Mod}(\varphi) \to \operatorname{Mod}(\psi)$ such that

$$\mathcal{M} \cong \mathcal{N} \iff \Phi(\mathcal{M}) \cong \Phi(\mathcal{N}).$$

If such a Borel reduction exists, we say that $Mod(\varphi)$ is Borel reducible to $Mod(\psi)$ and write $\varphi \leq_B \psi$. If $\varphi \leq_B \psi$ and $\psi \leq_B \varphi$, then we say that $\operatorname{Mod}(\varphi)$ and $\operatorname{Mod}(\psi)$ are Borel equivalent and write $\varphi \equiv_B \psi$. Friedman and Stanley showed that graphs, fields, linear orders, trees, and groups are all Borel equivalent, and form a maximal class under Borel reduction.

If $\operatorname{Mod}(\varphi)$ is Borel complete, then the isomorphism relation on $\operatorname{Mod}(\varphi) \times \operatorname{Mod}(\varphi)$ is Σ_1^1 -complete. The converse is not true, and the most well-known example is abelian p-groups, whose isomorphism relation is Σ_1^1 -complete but not Borel complete. Until very recently, they were one of the few such examples, and there were no known examples of elementary first-order theories with similar properties. Recently, Laskowski, Rast, and Ulrich [URL] gave an example of a first-order theory which is not Borel complete, but whose isomorphism relation is not Borel. (We do not know, but we expect, that the isomorphism problem is also Σ_1^1 -complete.) Our theory T_p is another such example.

Theorem 1.7. The class of models of T_p is Borel equivalent to abelian p-groups.

Because abelian p-groups are not Borel complete, but their isomorphism relation is Σ_1^1 -complete, we get:

Corollary 1.8. The class of models of T_p is not Borel complete but the isomorphism relation is Σ_1^1 -complete.

Theorem 1.7 is a specific instance of the following general question asked by Friedman:

Question 1.9. Is it true that for every $\mathcal{L}_{\omega_1\omega}$ sentence there is a Borel equivalent first-order theory?

2. Proof of Theorem 1.5

The proof of Theorem 1.5 consists essentially of expressing the Ulm invariants via computable infinitary formulas.

Definition 2.1. Let G be an abelian p-group. For each ordinal $\alpha < \omega_1^{CK}$, there is a computable infinitary sentence $\psi_{\alpha}(x)$ which defines $p^{\alpha}G$ inside of G:

- $\psi_0(x)$ is just x = x;
- $\psi_{\alpha+1}(x)$ is $(\exists y)[\psi_{\alpha}(y) \land py = x];$
- $\psi_{\beta}(x)$ is $\bigwedge_{\alpha < \beta} \psi_{\alpha}(x)$ for limit ordinals β .

Definition 2.2. For each ordinal $\alpha < \omega_1^{CK}$ and $n \in \omega \cup \{\omega\}$, there is a computable infinitary sentence $\varphi_{\alpha,n}$ such that, for G an abelian p-group,

$$G \vDash \varphi_{\alpha,n} \Leftrightarrow u_{\alpha}(G) = n.$$

For $n \in \omega$, define $\varphi_{\alpha, \geq n}$ to say that there are x_1, \ldots, x_n such that:

- $\psi_{\alpha}(x_1) \wedge \cdots \wedge \psi_{\alpha}(x_n)$,
- $px_1 = \cdots = px_n = 0$, and
- for all $c_1, \ldots, c_n \in \mathbb{Z}/p\mathbb{Z}$ not all zero, $\neg \psi_{\alpha+1}(c_1x_1 + \cdots + c_nx_n)$.

Then for $n \in \omega$, $\varphi_{\alpha,n}$ is $\varphi_{\alpha,\geq n} \wedge \neg \varphi_{\alpha,\geq n+1}$, and $\varphi_{\alpha,\omega}$ is $\bigwedge_{n\in\omega} \varphi_{\alpha,\geq n}$.

Lemma 2.3 (Theorem 8.17 of [AK00]). Let G be an abelian p-group. Then:

- the length of G is at most ω₁^G, and
 if G has length ω₁^G then G is not reduced (in fact, its p-divisible part has infinite rank) and $SR(G) = \omega_1^G + 1$.

We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. Since $\omega_1^{CK} = \omega_1^G$, G has length at most ω_1^{CK} . Note that $\text{Th}_{\infty}(G)$ contains the sentences $\varphi_{\alpha,u_{\alpha}(G)}$ for $\alpha < \omega_1^{CK}$. Thus any model of $\text{Th}_{\infty}(G)$ has the same Ulm invariants as G, for ordinals below ω_1^{CK} .

If $SR(G) < \omega_1^{CK}$, let λ be the length of G. Then $Th_{\infty}(G)$ includes the computable formula $(\forall x)[\psi_{\lambda}(x) \leftrightarrow \psi_{\lambda+1}(x)]$, so that any countable model of $\mathrm{Th}_{\infty}(G)$ has length at most λ . Note that in such a model, ψ_{λ} defines the p-divisible part. Let $n \in \omega \cup \{\omega\}$ be such that $p^{\infty}G$ is isomorphic to $\mathbb{Z}(p^{\infty})^n$. Then, if $n \in \omega$, $\mathrm{Th}_{\infty}(G)$ contains the formula which says that there are x_1, \ldots, x_n such that

- $\psi_{\lambda}(x_1) \wedge \cdots \wedge \psi_{\lambda}(x_n)$,
- for all $c_1, \ldots, c_n < p$ not all zero and $k_1, \ldots, k_n \in \omega$,

$$\frac{c_1}{p^{k_1}}x_1 + \dots + \frac{c_n}{p^{k_n}}x_n \neq 0,$$

• for all y with $\psi_{\lambda}(y)$, there are $c_1, \ldots, c_n < p$ and $k_1, \ldots, k_n \in \omega$ such that

$$y = \frac{c_1}{p^{k_1}}x_1 + \dots + \frac{c_n}{p^{k_n}}x_n.$$

If $n = \omega$, then $\operatorname{Th}_{\infty}(G)$ contains the formula which says that for each $m \in \omega$, there are x_1, \ldots, x_m such that

- $\psi_{\lambda}(x_1) \wedge \cdots \wedge \psi_{\lambda}(x_m)$, and
- for all $c_1, \ldots, c_m < p$ not all zero and $k_1, \ldots, k_m \in \omega$,

$$\frac{c_1}{p^{k_1}}x_1 + \dots + \frac{c_m}{p^{k_m}}x_m \neq 0.$$

Any countable model of $\operatorname{Th}_{\infty}(G)$ has p-divisible part isomorphic to $\mathbb{Z}(p^{\infty})^n$. So any countable model of $\operatorname{Th}_{\infty}(G)$ has the same Ulm invariants and p-divisible part as G, and hence is isomorphic to $\operatorname{Th}_{\infty}(G)$. Hence $\operatorname{Th}_{\infty}(G)$ is \aleph_0 -categorical. This gives (2), and (1) for the case where $\operatorname{SR}(G) < \omega_1^{CK}$.

If $SR(G) = \omega_1^{CK} + 1$, let H be any other countable model of $Th_{\infty}(G)$ with $\omega_1^H = \omega_1^G = \omega_1^{CK}$. Thus G and H both have length ω_1^{CK} and their p-divisible parts have infinite rank. As remarked before, they have the same Ulm invariants, and so they must be isomorphic. This completes the proof of (1).

3. The Theory T_p

Fix a prime p. The language \mathcal{L}_p of T_p will consist of a constant 0, unary relations R_n for $n \in \omega$, and ternary relations $P_{\ell,m}^n$ for $\ell, m \in \omega$ and $n \leq \max(\ell, m)$. The following transformation of an abelian p-group into an \mathcal{L}_p -structure will illustrate the intended meaning of the symbols.

Definition 3.1. Let G be an abelian p-group. Define $\mathfrak{M}(G)$ to be \mathcal{L}_p -structure obtained as follows, with the same domain as G, and the symbols of \mathcal{L}_p interpreted as follows:

- Set $0^{\mathfrak{M}(G)}$ to be the identity element of G.
- For each n, let $R_n^{\mathfrak{M}(G)}$ be the elements which are torsion of order p^n .
- For each $\ell, m \in \omega$ and $n \le \max(\ell, m)$, and $x, y, z \in G$, set $P_{\ell, m}^{n, \mathfrak{M}(G)}(x, y, z)$ if and only if x + y = z, $x \in R_{\ell}^{\mathfrak{M}(G)}$, $y \in R_{m}^{\mathfrak{M}(G)}$, and $z \in R_{n}^{\mathfrak{M}(G)}$.

One should think of such \mathcal{L}_p -structures as the canonical models of T_p . The theory T_p will consist of following axiom schemata:

(A1) For all $\ell, m, n \in \omega$:

$$(\forall x \forall y \forall z) \left[P_{\ell,m}^n(x,y,z) \to (R_{\ell}(x) \land R_m(x) \land R_n(z)) \right].$$

(A2) $(R_n \text{ contains the elements which are torsion of order } p^n.)$

$$(\forall x)[R_0(x) \leftrightarrow x = 0].$$

and, for all $n \ge 1$:

$$(\forall x) \left[x \in R_n \leftrightarrow (\exists x_2 \cdots \exists x_{p-1}) \left[P_{n,n}^n(x,x,x_2) \wedge P_{n,n}^n(x,x_2,x_3) \wedge \cdots \wedge P_{n,n}^{n-1}(x,x_{p-1},x_p) \right] \right].$$

(A3) (P defines a partial function.) For all $\ell, m, n, n' \in \omega$:

$$(\forall x \forall y \forall z \forall z') \left[\left(P_{\ell,m}^n(x,y,z) \land P_{\ell,m}^{n'}(x,y,z') \right) \rightarrow z = z' \right].$$

(A4) (P is total.) For all $\ell, m \in \omega$:

$$(\forall x \forall y) \left[\left(R_{\ell}(x) \wedge R_{m}(y) \right) \rightarrow \bigvee_{n \leq \max(\ell, m)} (\exists z) P_{\ell, m}^{n}(x, y, z) \right].$$

(A5) (Identity.) For all $\ell \in \omega$:

$$(\forall x)[R_{\ell}(x) \to [P_{0,\ell}^{\ell}(0,x,x) \land P_{\ell,0}^{\ell}(x,0,x)]].$$

(A6) (Inverses.) For all $\ell \in \omega$:

$$(\forall x)(\exists y) [R_{\ell}(x) \to [P_{\ell,\ell}^0(x,y,0) \land P_{\ell,\ell}^0(y,x,0)]].$$

(A7) (Associativity.) For all $\ell, m, n \in \omega$:

$$(\forall x \forall y \forall z) \Big[\Big[R_{\ell}(x) \wedge R_m(y) \wedge R_n(z) \Big] \longrightarrow$$

$$\bigvee_{\substack{r \leq \max(\ell, m) \\ s \leq \max(m, n) \\ \max(\ell, v) \text{ max}(\ell, s)}} (\exists u \exists v \exists w) \Big[P_{\ell, m}^{r}(x, y, u) \wedge P_{r, n}^{t}(u, z, w) \wedge P_{m, n}^{s}(y, z, v) \wedge P_{\ell, s}^{t}(x, v, w) \Big] \Big].$$

(A8) (Abelian.) For all $\ell, m \in \omega$ and $n \leq \max(\ell, m)$:

$$(\forall x \forall y \forall z) [[R_{\ell}(x) \land R_m(y) \land R_n(z) \land P_{\ell,m}^n(x,y,z)] \rightarrow P_{m,\ell}^n(y,x,z)].$$

We must now check that the definition of T_p works as desired, that is, that if G is an abelian p-group, then $\mathfrak{M}(G)$ is a model of T_p .

Lemma 3.2. If G is an abelian p-group, then $\mathfrak{M}(G) \models T_p$.

Proof. We must check that each instance of the axiom schemata of T_p holds in $\mathfrak{M}(G)$.

- (A1) Suppose that x, y, and z are elements of G with $P_{m,\ell}^{n,\mathfrak{M}(G)}(x,y,z)$. Then, by definition, $x+y=z, x\in R_{\ell}^{\mathfrak{M}}(G), y\in R_{m}^{\mathfrak{M}(G)}$, and $z\in R_{n}^{\mathfrak{M}(G)}$.
- (A2) $R_0^{\mathfrak{M}(G)}$ contains the elements of G which are torsion of order $p^0 = 1$, so R_0 contains just the identity. For each n > 0, $R_n^{\mathfrak{M}(G)}$ contains the elements of order p^n . An element x has order p^n if and only if px has order p^{n-1} . It remains only to note that if x has order p^n , then $x, 2x, 3x, \ldots, (p-1)x$ all have order p^n as well. The existential quantifier is witnessed by $x_2 = 2x$, $x_3 = 3x$, and so on.
- (A3) If, for some x, y, z, and z', $P_{\ell,m}^{n,\mathfrak{M}(G)}(x,y,z)$ and $P_{\ell,m}^{n',\mathfrak{M}(G)}(x,y,z')$, then x+y=z and x+y=z', so that z=z'.
- (A4) Given x and y in G which are of order p^m and p^ℓ respectively, x+y is of order p^n for some $n \leq \max(m,\ell)$, and so we have $P_{m,\ell}^{n,\mathfrak{M}(G)}(x,y,x+y)$.
- (A5) If $x \in G$ is of order p^{ℓ} , then x + 0 = 0 + x = x and so we have $P_{\ell,0}^{\ell,\mathfrak{M}(G)}(x,0,x)$.
- (A6) If $x \in G$ is of order p^{ℓ} , then -x is also of order p^{ℓ} , and x + (-x) = 0 = (-x) + x. So we have $P_{\ell,\ell}^{0,\mathfrak{M}(G)}(x, -x, 0)$.
- (A7) Given $x, y, z \in G$ of order p^{ℓ} , p^m , and p^n respectively, there are $r \leq \max(\ell, m)$ and $s \leq \max(m, n)$ such that x + y and y + z are of order p^r and p^s respectively. Then there is t such that x + y + z is of order p^t ; $t \leq \max(r, n)$ and $t \leq \max(\ell, s)$.
- (A8) Given $x, y, z \in G$ of order p^{ℓ} , p^m , and p^n respectively, $n \leq \max(\ell, m)$, and with x + y = z, we have y + x = z as G is abelian.

Thus we have shown that $\mathfrak{M}(G)$ is a model of T_p .

Note that G and $\mathfrak{M}(G)$ are effectively bi-interpretable, proving one half of Theorem 1.3.

4. From a model of T_p to an abelian p-group

Given an abelian p-group G, we have already described how to turn G into a model of T_p . In this section we will do the reverse by turning a model of T_p into an abelian p-group.

Definition 4.1. Let \mathcal{M} be a model of T_p . Define $\mathfrak{G}(\mathcal{M})$ to be the group obtained as follows.

- The domain of $\mathfrak{G}(\mathcal{M})$ will be the subset of the domain of \mathcal{M} given by $\bigcup_{n\in\omega} R_n^{\mathcal{M}}$.
- The identity element of $\mathfrak{G}(\mathcal{M})$ will be $0^{\mathcal{M}}$.
- We will have x + y = z in $\mathfrak{G}(\mathcal{M})$ if and only if, for some ℓ , m, and n, $P_{\ell,m}^{n,\mathcal{M}}(x,y,z)$.

We will now check that $\mathfrak{G}(\mathcal{M})$ is always an abelian p-group.

Lemma 4.2. If \mathcal{M} is a model of T_p , then $\mathfrak{G}(\mathcal{M})$ is an abelian p-group.

Proof. First we check that the operation + on $\mathfrak{G}(\mathcal{M})$ defines a total function. Given $x, y \in \mathfrak{G}(\mathcal{M})$, choose ℓ and m such that $x \in R_{\ell}^{\mathcal{M}}$ and $y \in R_m^{\mathcal{M}}$. Then by (A3) and (A4), there is a unique $n \leq \max(\ell, m)$ and a unique z such that $P_{\ell,m}^{n,\mathcal{M}}(x, y, z)$. Thus x + y = z, and z is unique.

Second, we check that $\mathfrak{G}(\mathcal{M})$ is in fact a group. To see that $0^{\mathcal{M}}$ is the identity, given $x \in \mathfrak{G}(\mathcal{M})$, there is ℓ such that $x \in R_{\ell}^{\mathcal{M}}$. By (A5), $P_{\ell,0}^{\ell,\mathcal{M}}(x,0^{\mathcal{M}},x)$ and $P_{0,\ell}^{\ell,\mathcal{M}}(0^{\mathcal{M}},x,0^{\mathcal{M}})$. Thus $x+0^{\mathcal{M}}=0^{\mathcal{M}}+x=x$, and $0^{\mathcal{M}}$ is the identity of $\mathfrak{G}(\mathcal{M})$. To see that $\mathfrak{G}(\mathcal{M})$ has inverses, given $x \in \mathfrak{G}(\mathcal{M})$, there is ℓ such that $x \in R_{\ell}^{\mathcal{M}}$, and by (A6) there is $y \in R_{\ell}^{\mathcal{M}}$ such that $P_{\ell,\ell}^{0,\mathcal{M}}(x,y,0^{\mathcal{M}})$ and $P_{\ell,\ell}^{0,\mathcal{M}}(y,x,0^{\mathcal{M}})$. Thus $x+y=y+x=0^{\mathcal{M}}$, and so y is the inverse of x. Finally, to see that $\mathfrak{G}(\mathcal{M})$ is associative, given $x,y,z \in \mathfrak{G}(\mathcal{M})$, there are ℓ , m, and n such that $x \in R_{\ell}^{\mathcal{M}}$, $y \in R_{m}^{\mathcal{M}}$, and $z \in R_{n}^{\mathcal{M}}$. Then by (A7) there are r, s, and t, and u, v, and w, such that $P_{\ell,m}^{r,\mathcal{M}}(x,y,u)$, $P_{r,n}^{t,\mathcal{M}}(u,z,w)$, $P_{m,n}^{s,\mathcal{M}}(y,z,v)$, and $P_{\ell,s}^{t,\mathcal{M}}(x,v,w)$. Thus x+y=u, u+z=w, y+z=v, and x+v=w. So (x+y)+z=x+(y+z). Thus $\mathfrak{G}(\mathcal{M})$ is associative.

Third, to see that $\mathfrak{G}(\mathcal{M})$ is abelian, let $x,y\in\mathfrak{G}(\mathcal{M})$. There are ℓ and m such that $x\in R_{\ell}^{\mathcal{M}}$ and $y\in R_{m}^{\mathcal{M}}$. Let $n\leq \max(\ell,m)$ be such that $z=x+y\in R_{n}^{\mathcal{M}}$. (Such an n and z exist by the arguments above that + is total, via (A3) and (A4).) Then $P_{\ell,m}^{n,\mathcal{M}}(x,y,z)$, and so by (A8), $P_{m,\ell}^{n,\mathcal{M}}(y,x,z)$. Thus y+x=z and so $\mathfrak{G}(\mathcal{M})$ is abelian.

Finally, we need to see that $\mathfrak{G}(\mathcal{M})$ is a p-group. We claim, by induction on $n \geq 0$, that $R_n^{\mathcal{M}}$ consists of the elements of $\mathfrak{G}(\mathcal{M})$ which are of order p^n . From this claim, it follows that $\mathfrak{G}(\mathcal{M})$ is a p-group. For n=0, the claim follows directly from (A2). Given n>0, suppose that $x\in R_n^{\mathcal{M}}$. Then the witnesses x_2,x_3,\ldots,x_p to (A2) must be $2x,3x,\ldots,px$. Note that since $P_{n,n}^{n-1,\mathcal{M}}(x,(p-1)x,px),\ px\in R_{n-1}^{\mathcal{M}}$. Thus px is of order p^{n-1} , and so x is of order p^n . On the other hand, if x is of order p^n , then px is of order p^{n-1} and so $px\in R_{n-1}^{\mathcal{M}}$. Moreover, $x_2=2x,x_3=3x,\ldots,x_{p-1}=(p-1)x$ are all of order p^n . So we have $P_{n,n}^{n,\mathcal{M}}(x,x,x_2),P_{n,n}^{n,\mathcal{M}}(x,x_2,x_3),\ldots,P_{n,n}^{n-1,\mathcal{M}}(x,x_{p-1},x_p)$. By (A2), $x\in R_n^{\mathcal{M}}$. This completes the inductive proof.

We now have two operations, one which turns an abelian p-group into a model of T_p , and another which turns a model of T_p into an abelian p-group. These two

operations are almost inverses to each other. If we begin with an abelian p-group, turn it into a model of T_p , and then that model into an abelian p-group, we will obtain the original group. However, if we start with a \mathcal{M} model of T_p , turn it into an abelian p-group, and then turn that abelian p-group into a model of T_p , we may obtain a different model of T_p . The problem is that the of elements of \mathcal{M} which are not in any of the sets $R_n^{\mathcal{M}}$ are discarded when we transform \mathcal{M} into an abelian p-group. However, these elements form a pure set, and so the only pertinent information is their size.

Definition 4.3. Given a model \mathcal{M} of T_p , the size of \mathcal{M} , $\#\mathcal{M} \in \omega \cup \{\infty\}$, is the number of elements of M not in any relation R_n .

Lemma 4.4. Given an abelian p-group G, $\mathfrak{G}(\mathfrak{M}(G)) = G$.

Proof. Since $\#\mathfrak{M}(G) = 0$, we see that G, $\mathfrak{M}(G)$, and $\mathfrak{G}(\mathfrak{M}(G))$ all have the same domain. The identity of $\mathfrak{G}(\mathfrak{M}(G))$ is $0^{\mathfrak{M}(G)}$ which is the identity of G. If x + y = z in G, then, for some $\ell, m, n \in \omega$, we have $P_{\ell,m}^{n,\mathfrak{M}(G)}(x,y,z)$. Thus, in $\mathfrak{G}(\mathfrak{M}(G))$, we have x + y = z. So $\mathfrak{G}(\mathfrak{M}(G)) = G$.

We make a simple extension to \mathfrak{M} as follows.

Definition 4.5. Let G be an abelian p-group and $m \in \omega \cup \{\infty\}$. Define $\mathfrak{M}(G,m)$ to be \mathcal{L}_p -structure with domain $G \cup \{a_1,\ldots,a_m\}$ with the relations interpreted as in $\mathfrak{M}(G)$. Thus, no relations hold of any of the elements a_1,\ldots,a_m .

Lemma 4.6. Given a model \mathcal{M} of T_p , $\mathfrak{M}(G(\mathcal{M}), \#\mathcal{M}) \cong \mathcal{M}$.

Proof. We will show that if $\#\mathcal{M} = 0$, then $\mathfrak{M}(\mathfrak{G}(\mathcal{M})) = \mathcal{M}$. From this one can easily see that $\mathfrak{M}(G(\mathcal{M}), \#\mathcal{M}) \cong \mathcal{M}$ in general.

If $\#\mathcal{M}=0$, then \mathcal{M} , $\mathfrak{G}(\mathcal{M})$, and $\mathfrak{M}(\mathfrak{G}(\mathcal{M}))$ all share the same domain. It is clear that $0^{\mathcal{M}}=0^{\mathfrak{G}(\mathcal{M})}=0^{\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}$. From the proof of Lemma 4.2, we see that for each n, $R_n^{\mathcal{M}}$ defines the set of elements of $\mathfrak{G}(\mathcal{M})$ which are torsion of order p^n , and so $R_n^{\mathcal{M}}=R_n^{\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}$. Given $\ell,m\in\omega$ and $n\leq \max(\ell,m)$, and x,y, and z elements of the shared domain, we have $P_{\ell,m}^{n,\mathcal{M}}(x,y,z)$ if and only if

$$x + y = z$$
 in $\mathfrak{G}(\mathcal{M})$ and $x \in R_{\ell}^{\mathcal{M}}$, $y \in R_m^{\mathcal{M}}$, and $z \in R_n^{\mathcal{M}}$.

Since $R_i^{\mathcal{M}} = R_i^{\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}$ for each i, this is the case if and only if $P_{\ell,m}^{n,\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}(x,y,z)$. Thus we have shown that $\mathfrak{M}(\mathfrak{G}(\mathcal{M})) = \mathcal{M}$.

Note that \mathcal{M} and the disjoint union of $\mathfrak{G}(\mathcal{M})$ with a pure set of size $\#\mathcal{M}$ are bi-interpretable, using computable infinitary formulas, completing the proof of Theorem 1.3.

5. Borel Equivalence

In this section we will prove Theorem 1.7 by showing that the class of models of T_p and the class of abelian p-groups are Borel equivalent. $G \mapsto \mathfrak{G}(\mathfrak{M}(G)) = \mathfrak{G}(\mathfrak{M}(G,0))$ is a Borel reduction from isomorphism on abelian p-groups to isomorphism on models of T_p . However, $\mathcal{M} \mapsto \mathfrak{G}(\mathcal{M})$ is not a Borel reduction in the other direction, because two non-isomorphic models of T_p might be mapped to isomorphic groups. We need to find a way to turn $\mathfrak{G}(\mathcal{M})$ and $\#\mathcal{M}$ into an abelian p-group $\mathfrak{H}(\mathfrak{G}(\mathcal{M}), \#\mathcal{M})$, so that \mathcal{M} and $\#\mathcal{M}$ can be recovered from $\mathfrak{H}(\mathfrak{G}(\mathcal{M}), \#\mathcal{M})$.

We will define $\mathfrak{H}(G,m)$ for any abelian p-group H and $m \in \omega \cup \{\infty\}$. It is helpful to think about what this reduction will do to the Ulm invariants: The first Ulm invariant of $\mathfrak{H}(G,m)$ will be m, and for each α , then $1 + \alpha$ th Ulm invariant of $\mathfrak{H}(G,m)$ will be the same as the α th Ulm invariant of G.

Definition 5.1. Given an abelian p-group G, and $m \in \omega \cup \{\infty\}$, define an abelian p-group $\mathfrak{H}(G,m)$ as follows. Let $\hat{\mathcal{B}}$ be a basis for the \mathbb{Z}_p -vector space G/pG. Let $\mathcal{B} \subseteq G$ be a set of representatives for $\hat{\mathcal{B}}$. Let G^* be the abelian group $\langle G, a_b : b \in \mathcal{B} \mid pa_b = b \rangle$. Then define $\mathfrak{H}(G,m) = G^* \oplus (\mathbb{Z}_p)^m$.

To make this Borel, we can take \mathcal{B} to be the lexicographically first set of representatives for a basis. It will follow from Lemma 5.4 that the isomorphism type of $\mathfrak{H}(G,m)$ does not depend on these choices. First, we require a couple of lemmas.

Lemma 5.2. Each element of G can be written uniquely as a (finite) linear combination $h + \sum_{b \in \mathcal{B}} x_b b$ where $h \in pG$ and each $x_b < p$.

Proof. Given $g \in G$, let \hat{g} be the image of g in G/pG. Then, since $\hat{\mathcal{B}}$ is a basis for G/pG, we can write

$$\hat{g} = \sum_{b \in \mathcal{B}} x_b \hat{b}$$

with $x_b < p$, where \hat{b} is the image of b in G/pG. Thus setting

$$h = g - \sum_{b \in \mathcal{B}} x_b b \in pG$$

we get a representation of g as in the statement of the theorem.

To see that this representation is unique, suppose that

$$h + \sum_{b \in \mathcal{B}} x_b b = h' + \sum_{b \in \mathcal{B}} y_b b.$$

Then, modulo pG,

$$\sum_{b \in \mathcal{B}} x_b \hat{b} = \sum_{b \in \mathcal{B}} y_b \hat{b}.$$

Since $\hat{\mathcal{B}}$ is a basis, $x_b = y_b$ for each $b \in \mathcal{B}$. Then we get that h = h' and the two representations are the same.

Lemma 5.3. Each element of G^* can be written uniquely in the form $h + \sum_{b \in \mathcal{B}} x_b a_b$ where $h \in G$ and each $x_b < p$.

Proof. It is clear that each element of G^* can be written in such a way. If

$$h + \sum_{b \in \mathcal{B}} x_b a_b = h' + \sum_{b \in \mathcal{B}} y_b a_b$$

then, in G,

$$ph + \sum_{b \in \mathcal{B}} x_b b = ph' + \sum_{b \in \mathcal{B}} y_b b.$$

This representation is unique, so $x_b = y_b$ for each $b \in \mathcal{B}$, and so h = h'.

Lemma 5.4. The isomorphism type of $\mathfrak{H}(G,m)$ depends only on the isomorphism type of G, and not on the choice of \mathcal{B} .

Proof. It suffices to show that if \mathcal{C} is another choice of representatives for a basis of G/pG, then $G_{\mathcal{B}}^* = G_{\mathcal{C}}^*$, where the former is constructed using \mathcal{B} , and the later is constructed using \mathcal{C} . Let $f: \mathcal{B} \to \mathcal{C}$ be an bijection.

Given $g \in G_{\mathcal{B}}^*$, write $g = g' + \sum_{b \in \mathcal{B}} x_b a_b$ with $g' \in G$ and $0 \le x_b < p$. This representation of g is unique by Lemma 5.3. Define $\varphi(g) = g' + \sum_{b \in \mathcal{B}} x_b a_{f(b)}$. It is not hard to check that φ is a homomorphism. The inverse of φ is the map ψ which is defined by $\psi(h) = h' + \sum_{c \in \mathcal{C}} y_c a_{f^{-1}(c)}$ where $h = h' + \sum_{c \in \mathcal{C}} y_c a_c$.

The next two lemmas will be used to show that if G is not isomorphic to G', or if m is not equal to m', then $\mathfrak{H}(G,m)$ will not be isomorphic to $\mathfrak{H}(G',m')$.

Lemma 5.5. $G = pG^*$.

Proof. Each element of G can be written as $g + \sum_{b \in \mathcal{B}} x_b b$ with $g \in pG$. Let $g' \in G$ be such that pg' = g. Then

$$p(g' + \sum_{b \in \mathcal{B}} x_b a_b) = g + \sum_{b \in \mathcal{B}} x_b b.$$

Hence $G \subseteq pG^*$. Given $h \in G^*$, write $h = g + \sum_{b \in \mathcal{B}} x_b a_b$. Then $ph = pg + \sum_{b \in \mathcal{B}} x_b b \in G$. So $pG^* \subseteq G$, and so $G = pG^*$.

If G is a group, recall that we denote by G[p] the elements of G which are torsion of order p.

Lemma 5.6. $\mathfrak{H}(G,m)[p]/(p\mathfrak{H}(G,m))[p] \cong (\mathbb{Z}_p)^m$.

Proof. Note that

$$\mathfrak{H}(G,m)[p]/(p\mathfrak{H}(G,m))[p] \cong (G^*[p]/(pG^*)[p]) \oplus ((\mathbb{Z}_p)^m[p]/(p(\mathbb{Z}_p)^m)[p])$$
$$\cong (G^*[p]/G[p]) \oplus (\mathbb{Z}_p)^m.$$

We will show that $(G^*[p]/G[p])$ is the trivial group by showing that if $g \in G^*$, pg = 0, then $g \in G$. Indeed, write $g = g' + \sum_{b \in \mathcal{B}} y_b a_b$ with $g' \in G$. Then

$$0 = pg = pg' + \sum_{b \in \mathcal{B}} py_b a_b = pg' + \sum_{b \in \mathcal{B}} y_b b.$$

Since $0 \in pG$ has a unique representation (by Lemma 5.2) $0 = 0 + \sum_{b \in \mathcal{B}} 0b$, we get that $y_b = 0$ for each $b \in \mathcal{B}$, and so $g = g' \in G$.

By the previous lemma, we can recover m from $\mathfrak{H}(G,m)$. We have

$$p\mathfrak{H}(G,m) = pG^* \oplus p(\mathbb{Z}_p)^m \cong pG^* = G$$

so that we can also recover G.

Thus, using Lemma 4.6, $\mathcal{M} \mapsto \mathfrak{H}(\mathfrak{G}(\mathcal{M}), \#\mathcal{M})$ gives a Borel reduction from T_p to abelian p-groups. This completes the proof of Theorem 1.7.

References

- [AK00] Chris J. Ash and Julia F. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2000.
- [FS89] Harvey Friedman and Lee Stanley. A Borel reducibility theory for classes of countable structures. J. Symbolic Logic, 54(3):894–914, 1989.
- [Fuc70] László Fuchs. Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36. Academic Press, New York-London, 1970.
- [HTIK] Matthew Harrison-Trainor, Gregory Igusa, and Julia F. Knight. Some new computable structures of high rank. Preprint.

- [HTMM] Matthew Harrison-Trainor, Russell Miller, and Antonio Montalbán. Borel functors and infinitary interpretations. Preprint.
- [HTMMM] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Montalbán. Computable functors and effective interpretability. To appear in the Journal of Symbolic Logic.
- [Mon] Antonio Montalbán. Computability theoretic classifications for classes of structures. To appear in the Proceedings of the ICM 2014.
- [Mon15] Antonio Montalbán. A robuster Scott rank. Proc. Amer. Math. Soc., 143(12):5427–5436, 2015.
- [Nad74] Mark Nadel. Scott sentences and admissible sets. Ann. Math. Logic, 7:267–294, 1974.
- [Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quantifiers. In Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages 329–341. North-Holland, Amsterdam, 1965.
- [Ulm33] Helmut Ulm. Zur Theorie der abzählbar-unendlichen Abelschen Gruppen. Math. Ann., 107(1):774–803, 1933.
- [URL] Douglas Ulrich, Richard Rast, and Michael C. Laskowski. Borel complexity and potential canonical scott sentences. Preprint.

Group in Logic and the Methodology of Science, University of California, Berkeley, USA $\,$

 $E\text{-}mail\ address: \verb|matthew.h-t@berkeley.edu||} URL: \verb|www.math.berkeley.edu||/~mattht|$