TRANSLATING THE CLASS OF ABELIAN p-GROUPS INTO AN ELEMENTARY FIRST-ORDER THEORY

MATTHEW HARRISON-TRAINOR

Abstract

The class of abelian p-groups are an example of some very interesting phenomena in computable structure theory and descriptive set theory. We will give an elementary first-order theory T_{p} whose models are each biinterpretable with the disjoint union of an abelian p-group and a pure set (and so that every abelian p-group is bi-interpretable with a model of T_{p}) using computable infinitary formulas. This answers a question of Knight by giving an example of an elementary first-order theory with the following property: The computable infinitary theory of any model (whether hyperarithmetic or not) with computable Scott rank is \aleph_{0}-categorical. It also gives a new example of an elementary first-order theory whose isomorphism problem is $\boldsymbol{\Sigma}_{1}^{1}$-complete but not Borel complete.

1. Introduction

The class of abelian p-groups is a well-studied example in computable structure theory. A simple compactness argument shows that abelian p-groups are not axiomatizable by an elementary first-order theory, but they are definable by the conjunction of the axioms for abelian p-groups (which are first-order $\forall \exists$ sentences) and the infinitary Π_{2}^{0} sentence which says that every element is torsion of order some power of p.

Abelian p-groups are classifiable by their Ulm sequences Ulm33. Due to this classification, abelian p-groups are examples of some very interesting phenomena in computable structure theory and descriptive set theory. We will define a theory T_{p} whose models behave like the class of abelian p-groups, giving a first-order example of these phenomena. In particular, Theorem 1.6 below answers a question of Knight.
1.1. Infinitary Formulas. The infinitary logic $\mathcal{L}_{\omega_{1} \omega}$ is the logic which allows countably infinite conjunctions and disjunctions but only finite quantification. If the conjunctions and disjunctions of a formula φ are all over computable sets of indices for formulas, then we say that φ is computable. We use $\Sigma_{\alpha}^{\mathrm{in}}$ and $\Pi_{\alpha}^{\mathrm{in}}$ to denote the classes of all infinitary Σ_{α} and Π_{α} formulas respectively. We will also use Σ_{α}^{c} and Π_{α}^{c} to denote the classes of computable Σ_{α} and Π_{α} formulas, where $\alpha<\omega_{1}^{C K}$ the least non-computable ordinal. See Chapter 6 of AK00 for a more complete description of computable formulas.
1.2. Bi-Interpretability. One way in which we will see that the models of T_{p} are essentially the same as abelian p-group is using bi-interpretations using infinitary formulas Mon, HTMMM, HTMM. A structure \mathcal{A} is infinitary interpretable in a structure \mathcal{B} if there is an interpretation of \mathcal{A} in \mathcal{B} where the domain of the interpretation is allowed to be a subset of $\mathcal{B}^{<\omega}$ and where all of the sets in the interpretation are definable using infinitary formulas. This differs from the classical
notion of interpretation, as in model theory [Mar02, Definition 1.3.9], where the domain is required to be a subset of \mathcal{B}^{n} for some n, and the sets in the interpretation are first-order definable.

Definition 1.1. We say that a structure $\mathcal{A}=\left(A ; P_{0}^{\mathcal{A}}, P_{1}^{\mathcal{A}}, \ldots\right)$ (where $P_{i}^{\mathcal{A}} \subseteq A^{a(i)}$) is infinitary interpretable in \mathcal{B} if there exists a sequence of relations $\left(\mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}}, \sim\right.$, R_{0}, R_{1}, \ldots), definable using infinitary formulas (in the language of \mathcal{B}, without parameters), such that
(1) $\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}} \subseteq \mathcal{B}^{<\omega}$,
(2) \sim is an equivalence relation on $\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}}$,
(3) $R_{i} \subseteq\left(B^{<\omega}\right)^{a(i)}$ is closed under \sim within $\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}}$,
and there exists a function $f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}} \rightarrow \mathcal{A}$ which induces an isomorphism:

$$
\left(\mathcal{D o m}_{\mathcal{A}}^{\mathcal{B}} / \sim ; R_{0} / \sim, R_{1} / \sim, \ldots\right) \cong\left(A ; P_{0}^{\mathcal{A}}, P_{1}^{\mathcal{A}}, \ldots\right)
$$

where R_{i} / \sim stands for the \sim-collapse of R_{i}.
Two structures \mathcal{A} and \mathcal{B} are infinitary bi-interpretable if they are each effectively interpretable in the other, and moreover, the composition of the interpretationsi.e., the isomorphisms which map \mathcal{A} to the copy of \mathcal{A} inside the copy of \mathcal{B} inside \mathcal{A}, and \mathcal{B} to the copy of \mathcal{B} inside the copy of \mathcal{A} inside \mathcal{B}-are definable.

Definition 1.2. Two structures \mathcal{A} and \mathcal{B} are infinitary bi-interpretable if there are infinitary interpretations of each structure in the other as in Definition 1.1 such that the compositions

$$
f_{\mathcal{B}}^{\mathcal{A}} \circ \tilde{f}_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D o m} m_{\mathcal{B}}^{\left(\mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}}\right)} \rightarrow \mathcal{B} \quad \text { and } \quad f_{\mathcal{A}}^{\mathcal{B}} \circ \tilde{f}_{\mathcal{B}}^{\mathcal{A}}: \mathcal{D o m}{\underset{\mathcal{A}}{ }}_{\left(\mathcal{D o m}_{\mathcal{B}}^{\mathcal{A}}\right)}^{\mathcal{A}}
$$

are definable in \mathcal{B} and \mathcal{A} respectively. (Here, we have $\mathcal{D o m}_{\mathcal{B}}^{\left(\mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}}\right)} \subseteq\left(\mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}}\right)^{<\omega}$, and $\tilde{f}_{\mathcal{A}}^{\mathcal{B}}:\left(\mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}}\right)^{<\omega} \rightarrow \mathcal{A}^{<\omega}$ is the obvious extension of $f_{\mathcal{A}}^{\mathcal{B}}: \mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}} \rightarrow \mathcal{A}$ mapping $\mathcal{D o m}_{\mathcal{B}}^{\left(\mathcal{D} o m_{\mathcal{A}}^{\mathcal{B}}\right)}$ to $\mathcal{D o m} m_{\mathcal{B}}^{\mathcal{A}}$.)

If we ask that the sets and relations in the interpretation (or bi-interpretation) be (uniformly) relatively intrinsically computable, i.e., definable by both a Σ_{1}^{c} formula and a Π_{1}^{c} formula, then we say that the interpretation (or bi-interpretation) is effective. Any two structures which are effectively bi-interpretable have all of the same computability-theoretic properties; for example, they have the same degree spectra and the same Scott rank. See [Mon, Lemma 5.3].

Here, we will use interpretations which use (lightface) Δ_{2}^{c} formulas. It is no longer true that any two structures which are Δ_{2}^{c}-bi-interpretable have all of the same computability-theoretic properties, but it is true, for example, that any two such structures either both have computable, or both have non-computable, Scott rank.

Theorem 1.3. Each abelian p-group is effectively bi-interpretable with a model of T_{p}. Each model of T_{p} is Δ_{2}^{c}-bi-interpretable with the disjoint union of an abelian p-group and a pure set.

This theorem will follow from the constructions in Sections 3 and 4 Given a model \mathcal{M} of T_{p}, \mathcal{M} is bi-interpretable with an abelian p-group G and a pure set. The domain of the copy of G inside of \mathcal{M} is definable by a Σ_{1}^{c} formula but not by a Π_{1}^{c} formula. This is the only part of the bi-interpretation which is not effective.
1.3. Classification via Ulm Sequences. Let G be an abelian group. For any ordinal α, we can define $p^{\alpha} G$ by transfinite induction:

- $p^{0} G=G$;
- $p^{\alpha+1} G=p\left(p^{\alpha} G\right)$;
- $p^{\beta} G=\bigcap_{\alpha<\beta} p^{\alpha} G$ if β is a limit ordinal.

These subgroups $p^{\alpha} G$ form a filtration of G. This filtration stabilizes, and we call the smallest ordinal α such that $p^{\alpha} G=p^{\alpha+1} G$ the length of G. We call the intersection $p^{\infty} G$ of these subgroups, which is a p-divisible group, the p-divisible part of G. Any countable p-divisible group is isomorphic to some direct product of the Prüfer group

$$
\mathbb{Z}\left(p^{\infty}\right)=\mathbb{Z}\left[1 / p, 1 / p^{2}, 1 / p^{3}, \ldots\right] / \mathbb{Z}
$$

Denote by $G[p]$ the subgroup of G consisting of the p-torsion elements. The α th Ulm invariant $u_{\alpha}(G)$ of G is the dimension of the quotient

$$
\left(p^{\alpha} G\right)[p] /\left(p^{\alpha+1} G\right)[p]
$$

as a vector space over $\mathbb{Z} / p \mathbb{Z}$.
Theorem 1.4 (Ulm's Theorem, see Fuc70). Let G and H be countable abelian p-groups such that for every ordinal α their α th Ulm invariants are equal, and the p-divisible parts of G and H are isomorphic. Then G and H are isomorphic.
1.4. Scott Rank and Computable Infinitary Theories. Scott [Sco65] showed that if \mathcal{M} is a countable structure, then there is a sentence φ of $\mathcal{L}_{\omega_{1} \omega}$ such that \mathcal{M} is, up to isomorphism, the only countable model of φ. We call such a sentence a Scott sentence for \mathcal{M}. There are many different definitions AK00, Sections 6.6 and 6.7] of the Scott rank of \mathcal{M}, which differ only slightly in the ranks they assign. The one we will use, which comes from Mon15, defines the Scott rank of \mathcal{A} to be the least ordinal α such that \mathcal{A} has a $\Pi_{\alpha+1}^{\text {in }}$ Scott sentence. We denote the Scott rank of a structure \mathcal{A} by $\operatorname{SR}(\mathcal{A})$. It is always the case that $\operatorname{SR}(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1$ [Nad74]. We could just as easily use any of the other definitions of Scott rank; for all of these definitions, given a computable structure \mathcal{A} :
(1) \mathcal{A} has computable Scott rank if and only if there is a computable ordinal α such that for all tuples \bar{a} in \mathcal{A}, the orbit of \bar{a} is defined by a computable Σ_{α} formula.
(2) \mathcal{A} has Scott rank $\omega_{1}^{C K}$ if and only if for each tuple \bar{a}, the orbit is defined by a computable infinitary formula, but for each computable ordinal α, there is a tuple \bar{a} whose orbit is not defined by a computable Σ_{α} formula.
(3) \mathcal{A} has Scott rank $\omega_{1}^{C K}+1$ if and only if there is a tuple \bar{a} whose orbit is not defined by a computable infinitary formula.
Given a structure \mathcal{M}, define the computable infinitary theory of $\mathcal{M}, \operatorname{Th}_{\infty}(\mathcal{M})$, to be collection of computable $\mathcal{L}_{\omega_{1} \omega}$ sentences true of \mathcal{M}. We can ask, for a given structure \mathcal{M}, whether $\operatorname{Th}_{\infty}(\mathcal{M})$ is \aleph_{0}-categorical, or whether there are other countable models of $\mathrm{Th}_{\infty}(\mathcal{M})$. For \mathcal{M} a hyperarithmetic structure:
(1) If $\operatorname{SR}(\mathcal{M})<\omega_{1}^{C K}$, then $\operatorname{Th}_{\infty}(\mathcal{M})$ is \aleph_{0}-categorical. Indeed, \mathcal{M} has a computable Scott sentence Nad74.
(2) If $\operatorname{SR}(\mathcal{M})=\omega_{1}^{C K}$, then $\operatorname{Th}_{\infty}(\mathcal{M})$ may or may not be \aleph_{0}-categorical HTIK.
(3) If $\operatorname{SR}(\mathcal{M})=\omega_{1}^{C K}+1$, then $\operatorname{Th}_{\infty}(\mathcal{M})$ is not \aleph_{0}-categorical as \mathcal{M} has a non-principal type which may be omitted.

In the case of abelian p-groups, we can say something even when we replace the assumption that \mathcal{M} is hyperarithmetic with the assumption that $\omega_{1}^{G}=\omega_{1}^{C K}$:
Theorem 1.5. Let G be an abelian p-group with $\omega_{1}^{C K}=\omega_{1}^{G}$. Then:
(1) G is the only countable model of $\operatorname{Th}_{\infty}(G)$ with $\omega_{1}^{G}=\omega_{1}^{C K}$, and
(2) if $\operatorname{SR}(G)<\omega_{1}^{C K}=\omega_{1}^{G}$, then $\operatorname{Th}_{\infty}(G)$ is \aleph_{0}-categorical.

This theorem is well-known but as far as we are aware does not appear in the literature. We will give a proof in Section 2. We also note that there are indeed non-hyperarithmetic abelian p-groups G with $\operatorname{SR}(G)<\omega_{1}^{C K}$.

Knight asked whether there was a (non-trivial) first-order theory with this same property. By a non-trivial example, we mean that the elementary first-order theory should have non-hyperarithmetic models. Our theory T_{p} is such an example.

Theorem 1.6. Given $\mathcal{M} \vDash T_{p}$ with $\omega_{1}^{C K}=\omega_{1}^{\mathcal{M}}$:
(1) \mathcal{M} is the only countable model of $\operatorname{Th}_{\infty}(\mathcal{M})$ with $\omega_{1}^{\mathcal{M}}=\omega_{1}^{C K}$, and
(2) if $\operatorname{SR}(\mathcal{M})<\omega_{1}^{C K}=\omega_{1}^{\mathcal{M}}$, then $\operatorname{Th}_{\infty}(\mathcal{M})$ is \aleph_{0}-categorical.

Proof. Let \mathcal{M} be a model of T_{p}. Now \mathcal{M} is bi-interpretable, using computable infinitary formulas, with the disjoint union of an abelian p-group G and a pure set. Thus \mathcal{M} inherits these properties from G.

Of course, there will be non-hyperarithmetic models of T_{p} with Scott rank below $\omega_{1}^{C K}$.
1.5. Borel Incompleteness. In their influential paper FS89, Friedman and Stanley introduced Borel reductions between invariant Borel classes of structures with universe ω in a countable language. Such classes are of the form $\operatorname{Mod}(\varphi)$, the set of models of φ with universe ω, for some $\varphi \in \mathcal{L}_{\omega_{1} \omega}$. A Borel reduction from $\operatorname{Mod}(\varphi)$ to $\operatorname{Mod}(\psi)$ is a Borel map $\Phi: \operatorname{Mod}(\varphi) \rightarrow \operatorname{Mod}(\psi)$ such that

$$
\mathcal{M} \cong \mathcal{N} \Longleftrightarrow \Phi(\mathcal{M}) \cong \Phi(\mathcal{N})
$$

If such a Borel reduction exists, we say that $\operatorname{Mod}(\varphi)$ is Borel reducible to $\operatorname{Mod}(\psi)$ and write $\varphi \leq_{B} \psi$. If $\varphi \leq_{B} \psi$ and $\psi \leq_{B} \varphi$, then we say that $\operatorname{Mod}(\varphi)$ and $\operatorname{Mod}(\psi)$ are Borel equivalent and write $\varphi \equiv_{B} \psi$. Friedman and Stanley showed that graphs, fields, linear orders, trees, and groups are all Borel equivalent, and form a maximal class under Borel reduction.

If $\operatorname{Mod}(\varphi)$ is Borel complete, then the isomorphism relation on $\operatorname{Mod}(\varphi) \times \operatorname{Mod}(\varphi)$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete. The converse is not true, and the most well-known example is abelian p-groups, whose isomorphism relation is $\boldsymbol{\Sigma}_{1}^{1}$-complete but not Borel complete. Until very recently, they were one of the few such examples, and there were no known examples of elementary first-order theories with similar properties. Recently, Laskowski, Rast, and Ulrich URL gave an example of a first-order theory which is not Borel complete, but whose isomorphism relation is not Borel. (We do not know, but we expect, that the isomorphism problem is also $\boldsymbol{\Sigma}_{1}^{\mathbf{1}}$-complete.) Our theory T_{p} is another such example.

Theorem 1.7. The class of models of T_{p} is Borel equivalent to abelian p-groups.
Because abelian p-groups are not Borel complete, but their isomorphism relation is $\boldsymbol{\Sigma}_{1}^{1}$-complete, we get:

Corollary 1.8. The class of models of T_{p} is not Borel complete but the isomorphism relation is $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$-complete.

Theorem 1.7 is a specific instance of the following general question asked by Friedman:
Question 1.9. Is it true that for every $\mathcal{L}_{\omega_{1} \omega}$ sentence there is a Borel equivalent first-order theory?

2. Proof of Theorem 1.5

The proof of Theorem 1.5 consists essentially of expressing the Ulm invariants via computable infinitary formulas.

Definition 2.1. Let G be an abelian p-group. For each ordinal $\alpha<\omega_{1}^{C K}$, there is a computable infinitary sentence $\psi_{\alpha}(x)$ which defines $p^{\alpha} G$ inside of G :

- $\psi_{0}(x)$ is just $x=x$;
- $\psi_{\alpha+1}(x)$ is $(\exists y)\left[\psi_{\alpha}(y) \wedge p y=x\right]$;
- $\psi_{\beta}(x)$ is $\mathbb{N}_{\alpha<\beta} \psi_{\alpha}(x)$ for limit ordinals β.

Definition 2.2. For each ordinal $\alpha<\omega_{1}^{C K}$ and $n \in \omega \cup\{\omega\}$, there is a computable infinitary sentence $\varphi_{\alpha, n}$ such that, for G an abelian p-group,

$$
G \vDash \varphi_{\alpha, n} \Leftrightarrow u_{\alpha}(G)=n .
$$

For $n \in \omega$, define $\varphi_{\alpha, \geq n}$ to say that there are x_{1}, \ldots, x_{n} such that:

- $\psi_{\alpha}\left(x_{1}\right) \wedge \cdots \wedge \psi_{\alpha}\left(x_{n}\right)$,
- $p x_{1}=\cdots=p x_{n}=0$, and
- for all $c_{1}, \ldots, c_{n} \in \mathbb{Z} / p \mathbb{Z}$ not all zero, $\neg \psi_{\alpha+1}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)$.

Then for $n \in \omega, \varphi_{\alpha, n}$ is $\varphi_{\alpha, \geq n} \wedge \neg \varphi_{\alpha, \geq n+1}$, and $\varphi_{\alpha, \omega}$ is $\mathbb{A}_{n \in \omega} \varphi_{\alpha, \geq n}$.
Lemma 2.3 (Theorem 8.17 of AK00). Let G be an abelian p-group. Then:
(1) the length of G is at most ω_{1}^{G}, and
(2) if G has length ω_{1}^{G} then G is not reduced (in fact, its p-divisible part has infinite rank) and $\operatorname{SR}(G)=\omega_{1}^{G}+1$.
We are now ready to give the proof of Theorem 1.5
Proof of Theorem 1.5. Since $\omega_{1}^{C K}=\omega_{1}^{G}, G$ has length at most $\omega_{1}^{C K}$. Note that $\mathrm{Th}_{\infty}(G)$ contains the sentences $\varphi_{\alpha, u_{\alpha}(G)}$ for $\alpha<\omega_{1}^{C K}$. Thus any model of $\mathrm{Th}_{\infty}(G)$ has the same Ulm invariants as G, for ordinals below $\omega_{1}^{C K}$.

If $\operatorname{SR}(G)<\omega_{1}^{C K}$, let λ be the length of G. Then $\operatorname{Th}_{\infty}(G)$ includes the computable formula $(\forall x)\left[\psi_{\lambda}(x) \leftrightarrow \psi_{\lambda+1}(x)\right]$, so that any countable model of $\operatorname{Th}_{\infty}(G)$ has length at most λ. Note that in such a model, ψ_{λ} defines the p-divisible part. Let $n \in \omega \cup\{\omega\}$ be such that $p^{\infty} G$ is isomorphic to $\mathbb{Z}\left(p^{\infty}\right)^{n}$. Then, if $n \in \omega, \operatorname{Th}_{\infty}(G)$ contains the formula which says that there are x_{1}, \ldots, x_{n} such that

- $\psi_{\lambda}\left(x_{1}\right) \wedge \cdots \wedge \psi_{\lambda}\left(x_{n}\right)$,
- for all $c_{1}, \ldots, c_{n}<p$ not all zero and $k_{1}, \ldots, k_{n} \in \omega$,

$$
\frac{c_{1}}{p^{k_{1}}} x_{1}+\cdots+\frac{c_{n}}{p^{k_{n}}} x_{n} \neq 0
$$

- for all y with $\psi_{\lambda}(y)$, there are $c_{1}, \ldots, c_{n}<p$ and $k_{1}, \ldots, k_{n} \in \omega$ such that

$$
y=\frac{c_{1}}{p^{k_{1}}} x_{1}+\cdots+\frac{c_{n}}{p^{k_{n}}} x_{n} .
$$

If $n=\omega$, then $\operatorname{Th}_{\infty}(G)$ contains the formula which says that for each $m \in \omega$, there are x_{1}, \ldots, x_{m} such that

- $\psi_{\lambda}\left(x_{1}\right) \wedge \cdots \wedge \psi_{\lambda}\left(x_{m}\right)$, and
- for all $c_{1}, \ldots, c_{m}<p$ not all zero and $k_{1}, \ldots, k_{m} \in \omega$,

$$
\frac{c_{1}}{p^{k_{1}}} x_{1}+\cdots+\frac{c_{m}}{p^{k_{m}}} x_{m} \neq 0
$$

Any countable model of $\mathrm{Th}_{\infty}(G)$ has p-divisible part isomorphic to $\mathbb{Z}\left(p^{\infty}\right)^{n}$. So any countable model of $\mathrm{Th}_{\infty}(G)$ has the same Ulm invariants and p-divisible part as G, and hence is isomorphic to $\operatorname{Th}_{\infty}(G)$. Hence $\operatorname{Th}_{\infty}(G)$ is \aleph_{0}-categorical. This gives (2), and (1) for the case where $\operatorname{SR}(G)<\omega_{1}^{C K}$.

If $\operatorname{SR}(G)=\omega_{1}^{C K}+1$, let H be any other countable model of $\operatorname{Th}_{\infty}(G)$ with $\omega_{1}^{H}=\omega_{1}^{G}=\omega_{1}^{C K}$. Thus G and H both have length $\omega_{1}^{C K}$ and their p-divisible parts have infinite rank. As remarked before, they have the same Ulm invariants, and so they must be isomorphic. This completes the proof of (1).

3. The Theory T_{p}

Fix a prime p. The language \mathcal{L}_{p} of T_{p} will consist of a constant 0 , unary relations R_{n} for $n \in \omega$, and ternary relations $P_{\ell, m}^{n}$ for $\ell, m \in \omega$ and $n \leq \max (\ell, m)$. The following transformation of an abelian p-group into an \mathcal{L}_{p}-structure will illustrate the intended meaning of the symbols.

Definition 3.1. Let G be an abelian p-group. Define $\mathfrak{M}(G)$ to be \mathcal{L}_{p}-structure obtained as follows, with the same domain as G, and the symbols of \mathcal{L}_{p} interpreted as follows:

- Set $0^{\mathfrak{M}(G)}$ to be the identity element of G.
- For each n, let $R_{n}^{\mathfrak{M}(G)}$ be the elements which are torsion of order p^{n}.
- For each $\ell, m \in \omega$ and $n \leq \max (\ell, m)$, and $x, y, z \in G$, set $P_{\ell, m}^{n, \mathfrak{M}(G)}(x, y, z)$ if and only if $x+y=z, x \in R_{\ell}^{\mathfrak{M}(G)}, y \in R_{m}^{\mathfrak{M}(G)}$, and $z \in R_{n}^{\mathfrak{M}(G)}$.

One should think of such \mathcal{L}_{p}-structures as the canonical models of T_{p}. The theory T_{p} will consist of following axiom schemata:
(A1) For all $\ell, m, n \in \omega$:

$$
(\forall x \forall y \forall z)\left[P_{\ell, m}^{n}(x, y, z) \rightarrow\left(R_{\ell}(x) \wedge R_{m}(x) \wedge R_{n}(z)\right)\right] .
$$

(A2) (R_{n} contains the elements which are torsion of order p^{n}.)

$$
(\forall x)\left[R_{0}(x) \leftrightarrow x=0\right] .
$$

and, for all $n \geq 1$:
$(\forall x)\left[x \in R_{n} \leftrightarrow\left(\exists x_{2} \cdots \exists x_{p-1}\right)\left[P_{n, n}^{n}\left(x, x, x_{2}\right) \wedge P_{n, n}^{n}\left(x, x_{2}, x_{3}\right) \wedge \cdots \wedge P_{n, n}^{n-1}\left(x, x_{p-1}, x_{p}\right)\right]\right]$.
(A3) (P defines a partial function.) For all $\ell, m, n, n^{\prime} \in \omega$:

$$
\left(\forall x \forall y \forall z \forall z^{\prime}\right)\left[\left(P_{\ell, m}^{n}(x, y, z) \wedge P_{\ell, m}^{n^{\prime}}\left(x, y, z^{\prime}\right)\right) \rightarrow z=z^{\prime}\right]
$$

(A4) (P is total.) For all $\ell, m \in \omega$:

$$
(\forall x \forall y)\left[\left(R_{\ell}(x) \wedge R_{m}(y)\right) \rightarrow \bigvee_{n \leq \max (\ell, m)}(\exists z) P_{\ell, m}^{n}(x, y, z)\right]
$$

(A5) (Identity.) For all $\ell \in \omega$:

$$
(\forall x)\left[R_{\ell}(x) \rightarrow\left[P_{0, \ell}^{\ell}(0, x, x) \wedge P_{\ell, 0}^{\ell}(x, 0, x)\right]\right] .
$$

(A6) (Inverses.) For all $\ell \in \omega$:

$$
(\forall x)(\exists y)\left[R_{\ell}(x) \rightarrow\left[P_{\ell, \ell}^{0}(x, y, 0) \wedge P_{\ell, \ell}^{0}(y, x, 0)\right]\right] .
$$

(A7) (Associativity.) For all $\ell, m, n \in \omega$:

$$
\begin{aligned}
& (\forall x \forall y \forall z)\left[\left[R_{\ell}(x) \wedge R_{m}(y) \wedge R_{n}(z)\right] \longrightarrow\right. \\
& \left.\quad \underset{\substack{r \leq \max (\ell, m) \\
s \leq \max (m, n) \\
t \leq \max (r, n), \max (\ell, s)}}{ }(\exists u \exists v \exists w)\left[P_{\ell, m}^{r}(x, y, u) \wedge P_{r, n}^{t}(u, z, w) \wedge P_{m, n}^{s}(y, z, v) \wedge P_{\ell, s}^{t}(x, v, w)\right]\right] .
\end{aligned}
$$

(A8) (Abelian.) For all $\ell, m \in \omega$ and $n \leq \max (\ell, m)$:

$$
(\forall x \forall y \forall z)\left[\left[R_{\ell}(x) \wedge R_{m}(y) \wedge R_{n}(z) \wedge P_{\ell, m}^{n}(x, y, z)\right] \rightarrow P_{m, \ell}^{n}(y, x, z)\right] .
$$

We must now check that the definition of T_{p} works as desired, that is, that if G is an abelian p-group, then $\mathfrak{M}(G)$ is a model of T_{p}.
Lemma 3.2. If G is an abelian p-group, then $\mathfrak{M}(G) \vDash T_{p}$.
Proof. We must check that each instance of the axiom schemata of T_{p} holds in $\mathfrak{M}(G)$.
(A1) Suppose that x, y, and z are elements of G with $P_{m, \ell}^{n, \mathfrak{M}(G)}(x, y, z)$. Then, by definition, $x+y=z, x \in R_{\ell}^{\mathfrak{M}}(G), y \in R_{m}^{\mathfrak{M}(G)}$, and $z \in R_{n}^{\mathfrak{M}(G)}$.
(A2) $R_{0}^{\mathfrak{M l}(G)}$ contains the elements of G which are torsion of order $p^{0}=1$, so R_{0} contains just the identity. For each $n>0, R_{n}^{\mathfrak{M P}(G)}$ contains the elements of order p^{n}. An element x has order p^{n} if and only if $p x$ has order p^{n-1}. It remains only to note that if x has order p^{n}, then $x, 2 x, 3 x, \ldots,(p-1) x$ all have order p^{n} as well. The existential quantifier is witnessed by $x_{2}=2 x$, $x_{3}=3 x$, and so on.
(A3) If, for some x, y, z, and $z^{\prime}, P_{\ell, m}^{n, \mathfrak{M}(G)}(x, y, z)$ and $P_{\ell, m}^{n^{\prime}, \mathfrak{M}(G)}\left(x, y, z^{\prime}\right)$, then $x+y=z$ and $x+y=z^{\prime}$, so that $z=z^{\prime}$.
(A4) Given x and y in G which are of order p^{m} and p^{ℓ} respectively, $x+y$ is of order p^{n} for some $n \leq \max (m, \ell)$, and so we have $P_{m, \ell}^{n, \mathfrak{M}(G)}(x, y, x+y)$.
(A5) If $x \in G$ is of order p^{ℓ}, then $x+0=0+x=x$ and so we have $P_{\ell, 0}^{\ell, \mathfrak{M}(G)}(x, 0, x)$.
(A6) If $x \in G$ is of order p^{ℓ}, then $-x$ is also of order p^{ℓ}, and $x+(-x)=0=(-x)+x$. So we have $P_{\ell, \ell}^{0, M(G)}(x,-x, 0)$.
(A7) Given $x, y, z \in G$ of order p^{ℓ}, p^{m}, and p^{n} respectively, there are $r \leq \max (\ell, m)$ and $s \leq \max (m, n)$ such that $x+y$ and $y+z$ are of order p^{r} and p^{s} respectively. Then there is t such that $x+y+z$ is of order $p^{t} ; t \leq \max (r, n)$ and $t \leq \max (\ell, s)$.
(A8) Given $x, y, z \in G$ of order p^{ℓ}, p^{m}, and p^{n} respectively, $n \leq \max (\ell, m)$, and with $x+y=z$, we have $y+x=z$ as G is abelian.
Thus we have shown that $\mathfrak{M}(G)$ is a model of T_{p}.
Note that G and $\mathfrak{M}(G)$ are effectively bi-interpretable, proving one half of Theorem 1.3

4. From a model of T_{p} to an abelian p-Group

Given an abelian p-group G, we have already described how to turn G into a model of T_{p}. In this section we will do the reverse by turning a model of T_{p} into an abelian p-group.
Definition 4.1. Let \mathcal{M} be a model of T_{p}. Define $\mathfrak{G}(\mathcal{M})$ to be the group obtained as follows.

- The domain of $\mathfrak{G}(\mathcal{M})$ will be the subset of the domain of \mathcal{M} given by $\bigcup_{n \in \omega} R_{n}^{\mathcal{M}}$.
- The identity element of $\mathfrak{G}(\mathcal{M})$ will be $0^{\mathcal{M}}$.
- We will have $x+y=z$ in $\mathfrak{G}(\mathcal{M})$ if and only if, for some ℓ, m, and n, $P_{\ell, m}^{n, \mathcal{M}}(x, y, z)$.
We will now check that $\mathfrak{G}(\mathcal{M})$ is always an abelian p-group.
Lemma 4.2. If \mathcal{M} is a model of T_{p}, then $\mathfrak{G}(\mathcal{M})$ is an abelian p-group.
Proof. First we check that the operation + on $\mathfrak{G}(\mathcal{M})$ defines a total function. Given $x, y \in \mathfrak{G}(\mathcal{M})$, choose ℓ and m such that $x \in R_{\ell}^{\mathcal{M}}$ and $y \in R_{m}^{\mathcal{M}}$. Then by (A3) and (A4), there is a unique $n \leq \max (\ell, m)$ and a unique z such that $P_{\ell, m}^{n, \mathcal{M}}(x, y, z)$. Thus $x+y=z$, and z is unique.

Second, we check that $\mathfrak{G}(\mathcal{M})$ is in fact a group. To see that $0^{\mathcal{M}}$ is the identity, given $x \in \mathfrak{G}(\mathcal{M})$, there is ℓ such that $x \in R_{\ell}^{\mathcal{M}}$. By (A5), $P_{\ell, 0}^{\ell, \mathcal{M}}\left(x, 0^{\mathcal{M}}, x\right)$ and $P_{0, \ell}^{\ell, \mathcal{M}}\left(0^{\mathcal{M}}, x, 0^{\mathcal{M}}\right)$. Thus $x+0^{\mathcal{M}}=0^{\mathcal{M}}+x=x$, and $0^{\mathcal{M}}$ is the identity of $\mathfrak{G}(\mathcal{M})$. To see that $\mathfrak{G}(\mathcal{M})$ has inverses, given $x \in \mathfrak{G}(\mathcal{M})$, there is ℓ such that $x \in R_{\ell}^{\mathcal{M}}$, and by (A6) there is $y \in R_{\ell}^{\mathcal{M}}$ such that $P_{\ell, \ell}^{0, \mathcal{M}}\left(x, y, 0^{\mathcal{M}}\right)$ and $P_{\ell, \ell}^{0, \mathcal{M}}\left(y, x, 0^{\mathcal{M}}\right)$. Thus $x+y=y+x=0^{\mathcal{M}}$, and so y is the inverse of x. Finally, to see that $\mathfrak{G}(M)$ is associative, given $x, y, z \in \mathfrak{G}(\mathcal{M})$, there are ℓ, m, and n such that $x \in R_{\ell}^{\mathcal{M}}, y \in R_{m}^{\mathcal{M}}$, and $z \in R_{n}^{\mathcal{M}}$. Then by (A7) there are r, s, and t, and u, v, and w, such that $P_{\ell, m}^{r, \mathcal{M}}(x, y, u), P_{r, n}^{t, \mathcal{M}}(u, z, w), P_{m, n}^{s, \mathcal{M}}(y, z, v)$, and $P_{\ell, s}^{t, \mathcal{M}}(x, v, w)$. Thus $x+y=u$, $u+z=w, y+z=v$, and $x+v=w$. So $(x+y)+z=x+(y+z)$. Thus $\mathfrak{G}(\mathcal{M})$ is associative.

Third, to see that $\mathfrak{G}(\mathcal{M})$ is abelian, let $x, y \in \mathfrak{G}(\mathcal{M})$. There are ℓ and m such that $x \in R_{\ell}^{\mathcal{M}}$ and $y \in R_{m}^{\mathcal{M}}$. Let $n \leq \max (\ell, m)$ be such that $z=x+y \in R_{n}^{\mathcal{M}}$. (Such an n and z exist by the arguments above that + is total, via (A3) and (A4).) Then $P_{\ell, m}^{n, \mathcal{M}}(x, y, z)$, and so by (A8), $P_{m, \ell}^{n, \mathcal{M}}(y, x, z)$. Thus $y+x=z$ and so $\mathfrak{G}(\mathcal{M})$ is abelian.

Finally, we need to see that $\mathfrak{G}(\mathcal{M})$ is a p-group. We claim, by induction on $n \geq 0$, that $R_{n}^{\mathcal{M}}$ consists of the elements of $\mathfrak{G}(\mathcal{M})$ which are of order p^{n}. From this claim, it follows that $\mathfrak{G}(\mathcal{M})$ is a p-group. For $n=0$, the claim follows directly from (A2). Given $n>0$, suppose that $x \in R_{n}^{\mathcal{M}}$. Then the witnesses $x_{2}, x_{3}, \ldots, x_{p}$ to (A2) must be $2 x, 3 x, \ldots, p x$. Note that since $P_{n, n}^{n-1, \mathcal{M}}(x,(p-1) x, p x), p x \in R_{n-1}^{\mathcal{M}}$. Thus $p x$ is of order p^{n-1}, and so x is of order p^{n}. On the other hand, if x is of order p^{n}, then $p x$ is of order p^{n-1} and so $p x \in R_{n-1}^{\mathcal{M}}$. Moreover, $x_{2}=2 x, x_{3}=3 x, \ldots, x_{p-1}=(p-1) x$ are all of order p^{n}. So we have $P_{n, n}^{n, \mathcal{M}}\left(x, x, x_{2}\right), P_{n, n}^{n, \mathcal{M}}\left(x, x_{2}, x_{3}\right), \ldots, P_{n, n}^{n-1, \mathcal{M}}\left(x, x_{p-1}, x_{p}\right)$. By (A2), $x \in R_{n}^{\mathcal{M}}$. This completes the inductive proof.

We now have two operations, one which turns an abelian p-group into a model of T_{p}, and another which turns a model of T_{p} into an abelian p-group. These two
operations are almost inverses to each other. If we begin with an abelian p-group, turn it into a model of T_{p}, and then that model into an abelian p-group, we will obtain the original group. However, if we start with a \mathcal{M} model of T_{p}, turn it into an abelian p-group, and then turn that abelian p-group into a model of T_{p}, we may obtain a different model of T_{p}. The problem is that the of elements of \mathcal{M} which are not in any of the sets $R_{n}^{\mathcal{M}}$ are discarded when we transform \mathcal{M} into an abelian p-group. However, these elements form a pure set, and so the only pertinent information is their size.

Definition 4.3. Given a model \mathcal{M} of T_{p}, the size of $\mathcal{M}, \# \mathcal{M} \in \omega \cup\{\infty\}$, is the number of elements of M not in any relation R_{n}.

Lemma 4.4. Given an abelian p-group $G, \mathfrak{G}(\mathfrak{M}(G))=G$.
Proof. Since $\# \mathfrak{M}(G)=0$, we see that $G, \mathfrak{M}(G)$, and $\mathfrak{G}(\mathfrak{M}(G))$ all have the same domain. The identity of $\mathfrak{G}(\mathfrak{M}(G))$ is $0^{\mathfrak{M}(G)}$ which is the identity of G. If $x+y=z$ in G, then, for some $\ell, m, n \in \omega$, we have $P_{\ell, m}^{n, \mathfrak{M}(G)}(x, y, z)$. Thus, in $\mathfrak{G}(\mathfrak{M}(G))$, we have $x+y=z$. So $\mathfrak{G}(\mathfrak{M}(G))=G$.

We make a simple extension to \mathfrak{M} as follows.
Definition 4.5. Let G be an abelian p-group and $m \in \omega \cup\{\infty\}$. Define $\mathfrak{M}(G, m)$ to be \mathcal{L}_{p}-structure with domain $G \cup\left\{a_{1}, \ldots, a_{m}\right\}$ with the relations interpreted as in $\mathfrak{M}(G)$. Thus, no relations hold of any of the elements a_{1}, \ldots, a_{m}.

Lemma 4.6. Given a model \mathcal{M} of $T_{p}, \mathfrak{M}(G(\mathcal{M}), \# \mathcal{M}) \cong \mathcal{M}$.
Proof. We will show that if $\# \mathcal{M}=0$, then $\mathfrak{M}(\mathfrak{G}(\mathcal{M}))=\mathcal{M}$. From this one can easily see that $\mathfrak{M}(G(\mathcal{M}), \# \mathcal{M}) \cong \mathcal{M}$ in general.

If $\# \mathcal{M}=0$, then $\mathcal{M}, \mathfrak{G}(\mathcal{M})$, and $\mathfrak{M}(\mathfrak{G}(\mathcal{M}))$ all share the same domain. It is clear that $0^{\mathcal{M}}=0^{\mathfrak{G}(\mathcal{M})}=0^{\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}$. From the proof of Lemma 4.2, we see that for each $n, R_{n}^{\mathcal{M}}$ defines the set of elements of $\mathfrak{G}(\mathcal{M})$ which are torsion of order p^{n}, and so $R_{n}^{\mathcal{M}}=R_{n}^{\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}$. Given $\ell, m \in \omega$ and $n \leq \max (\ell, m)$, and x, y, and z elements of the shared domain, we have $P_{\ell, m}^{n, \mathcal{M}}(x, y, z)$ if and only if

$$
x+y=z \text { in } \mathfrak{G}(\mathcal{M}) \text { and } x \in R_{\ell}^{\mathcal{M}}, y \in R_{m}^{\mathcal{M}}, \text { and } z \in R_{n}^{\mathcal{M}} .
$$

Since $R_{i}^{\mathcal{M}}=R_{i}^{\mathfrak{M}(\mathfrak{G}(\mathcal{M}))}$ for each i, this is the case if and only if $P_{\ell, m}^{n, \mathfrak{M}(\mathfrak{G}(\mathcal{M}))}(x, y, z)$. Thus we have shown that $\mathfrak{M}(\mathfrak{G}(\mathcal{M}))=\mathcal{M}$.

Note that \mathcal{M} and the disjoint union of $\mathfrak{G}(\mathcal{M})$ with a pure set of size $\# \mathcal{M}$ are bi-interpretable, using computable infinitary formulas, completing the proof of Theorem 1.3 .

5. Borel Equivalence

In this section we will prove Theorem 1.7 by showing that the class of models of T_{p} and the class of abelian p-groups are Borel equivalent. $\quad G \mapsto \mathfrak{G}(\mathfrak{M}(G))=$ $\mathfrak{G}(\mathfrak{M}(G, 0))$ is a Borel reduction from isomorphism on abelian p-groups to isomorphism on models of T_{p}. However, $\mathcal{M} \mapsto \mathfrak{G}(\mathcal{M})$ is not a Borel reduction in the other direction, because two non-isomorphic models of T_{p} might be mapped to isomorphic groups. We need to find a way to turn $\mathfrak{G}(\mathcal{M})$ and $\# \mathcal{M}$ into an abelian p-group $\mathfrak{H}(\mathfrak{G}(\mathcal{M}), \# \mathcal{M})$, so that \mathcal{M} and $\# \mathcal{M}$ can be recovered from $\mathfrak{H}(\mathfrak{G}(\mathcal{M}), \# \mathcal{M})$.

We will define $\mathfrak{H}(G, m)$ for any abelian p-group H and $m \in \omega \cup\{\infty\}$. It is helpful to think about what this reduction will do to the Ulm invariants: The first Ulm invariant of $\mathfrak{H}(G, m)$ will be m, and for each α, then $1+\alpha$ th Ulm invariant of $\mathfrak{H}(G, m)$ will be the same as the α th Ulm invariant of G.

Definition 5.1. Given an abelian p-group G, and $m \in \omega \cup\{\infty\}$, define an abelian p group $\mathfrak{H}(G, m)$ as follows. Let $\hat{\mathcal{B}}$ be a basis for the \mathbb{Z}_{p}-vector space $G / p G$. Let $\mathcal{B} \subseteq G$ be a set of representatives for $\hat{\mathcal{B}}$. Let G^{*} be the abelian group $\left\langle G, a_{b}: b \in \mathcal{B} \mid p a_{b}=b\right\rangle$. Then define $\mathfrak{H}(G, m)=G^{*} \oplus\left(\mathbb{Z}_{p}\right)^{m}$.

To make this Borel, we can take \mathcal{B} to be the lexicographically first set of representatives for a basis. It will follow from Lemma 5.4 that the isomorphism type of $\mathfrak{H}(G, m)$ does not depend on these choices. First, we require a couple of lemmas.

Lemma 5.2. Each element of G can be written uniquely as a (finite) linear combination $h+\sum_{b \in \mathcal{B}} x_{b} b$ where $h \in p G$ and each $x_{b}<p$.

Proof. Given $g \in G$, let \hat{g} be the image of g in $G / p G$. Then, since $\hat{\mathcal{B}}$ is a basis for $G / p G$, we can write

$$
\hat{g}=\sum_{b \in \mathcal{B}} x_{b} \hat{b}
$$

with $x_{b}<p$, where \hat{b} is the image of b in $G / p G$. Thus setting

$$
h=g-\sum_{b \in \mathcal{B}} x_{b} b \in p G
$$

we get a representation of g as in the statement of the theorem.
To see that this representation is unique, suppose that

$$
h+\sum_{b \in \mathcal{B}} x_{b} b=h^{\prime}+\sum_{b \in \mathcal{B}} y_{b} b .
$$

Then, modulo $p G$,

$$
\sum_{b \in \mathcal{B}} x_{b} \hat{b}=\sum_{b \in \mathcal{B}} y_{b} \hat{b}
$$

Since $\hat{\mathcal{B}}$ is a basis, $x_{b}=y_{b}$ for each $b \in \mathcal{B}$. Then we get that $h=h^{\prime}$ and the two representations are the same.

Lemma 5.3. Each element of G^{*} can be written uniquely in the form $h+\sum_{b \in \mathcal{B}} x_{b} a_{b}$ where $h \in G$ and each $x_{b}<p$.

Proof. It is clear that each element of G^{*} can be written in such a way. If

$$
h+\sum_{b \in \mathcal{B}} x_{b} a_{b}=h^{\prime}+\sum_{b \in \mathcal{B}} y_{b} a_{b}
$$

then, in G,

$$
p h+\sum_{b \in \mathcal{B}} x_{b} b=p h^{\prime}+\sum_{b \in \mathcal{B}} y_{b} b .
$$

This representation is unique, so $x_{b}=y_{b}$ for each $b \in \mathcal{B}$, and so $h=h^{\prime}$.
Lemma 5.4. The isomorphism type of $\mathfrak{H}(G, m)$ depends only on the isomorphism type of G, and not on the choice of \mathcal{B}.

Proof. It suffices to show that if \mathcal{C} is another choice of representatives for a basis of $G / p G$, then $G_{\mathcal{B}}^{*}=G_{\mathcal{C}}^{*}$, where the former is constructed using \mathcal{B}, and the later is constructed using \mathcal{C}. Let $f: \mathcal{B} \rightarrow \mathcal{C}$ be an bijection.

Given $g \in G_{\mathcal{B}}^{*}$, write $g=g^{\prime}+\sum_{b \in \mathcal{B}} x_{b} a_{b}$ with $g^{\prime} \in G$ and $0 \leq x_{b}<p$. This representation of g is unique by Lemma 5.3. Define $\varphi(g)=g^{\prime}+\sum_{b \in \mathcal{B}} x_{b} a_{f(b)}$. It is not hard to check that φ is a homomorphism. The inverse of φ is the map ψ which is defined by $\psi(h)=h^{\prime}+\sum_{c \in \mathcal{C}} y_{c} a_{f^{-1}(c)}$ where $h=h^{\prime}+\sum_{c \in \mathcal{C}} y_{c} a_{c}$.

The next two lemmas will be used to show that if G is not isomorphic to G^{\prime}, or if m is not equal to m^{\prime}, then $\mathfrak{H}(G, m)$ will not be isomorphic to $\mathfrak{H}\left(G^{\prime}, m^{\prime}\right)$.

Lemma 5.5. $G=p G^{*}$.
Proof. Each element of G can be written as $g+\sum_{b \in \mathcal{B}} x_{b} b$ with $g \in p G$. Let $g^{\prime} \in G$ be such that $p g^{\prime}=g$. Then

$$
p\left(g^{\prime}+\sum_{b \in \mathcal{B}} x_{b} a_{b}\right)=g+\sum_{b \in \mathcal{B}} x_{b} b .
$$

Hence $G \subseteq p G^{*}$. Given $h \in G^{*}$, write $h=g+\sum_{b \in \mathcal{B}} x_{b} a_{b}$. Then $p h=p g+\sum_{b \in \mathcal{B}} x_{b} b \in G$. So $p G^{*} \subseteq G$, and so $G=p G^{*}$.

If G is a group, recall that we denote by $G[p]$ the elements of G which are torsion of order p.

Lemma 5.6. $\mathfrak{H}(G, m)[p] /(p \mathfrak{H}(G, m))[p] \cong\left(\mathbb{Z}_{p}\right)^{m}$.
Proof. Note that

$$
\begin{aligned}
\mathfrak{H}(G, m)[p] /(p \mathfrak{H}(G, m))[p] & \cong\left(G^{*}[p] /\left(p G^{*}\right)[p]\right) \oplus\left(\left(\mathbb{Z}_{p}\right)^{m}[p] /\left(p\left(\mathbb{Z}_{p}\right)^{m}\right)[p]\right) \\
& \cong\left(G^{*}[p] / G[p]\right) \oplus\left(\mathbb{Z}_{p}\right)^{m} .
\end{aligned}
$$

We will show that $\left(G^{*}[p] / G[p]\right)$ is the trivial group by showing that if $g \in G^{*}$, $p g=0$, then $g \in G$. Indeed, write $g=g^{\prime}+\sum_{b \in \mathcal{B}} y_{b} a_{b}$ with $g^{\prime} \in G$. Then

$$
0=p g=p g^{\prime}+\sum_{b \in \mathcal{B}} p y_{b} a_{b}=p g^{\prime}+\sum_{b \in \mathcal{B}} y_{b} b .
$$

Since $0 \in p G$ has a unique representation (by Lemma 5.2) $0=0+\sum_{b \in \mathcal{B}} 0 b$, we get that $y_{b}=0$ for each $b \in \mathcal{B}$, and so $g=g^{\prime} \in G$.

By the previous lemma, we can recover m from $\mathfrak{H}(G, m)$. We have

$$
p \mathfrak{H}(G, m)=p G^{*} \oplus p\left(\mathbb{Z}_{p}\right)^{m} \cong p G^{*}=G
$$

so that we can also recover G.
Thus, using Lemma 4.6 $\mathcal{M} \mapsto \mathfrak{H}(\mathfrak{G}(\mathcal{M}), \# \mathcal{M})$ gives a Borel reduction from T_{p} to abelian p-groups. This completes the proof of Theorem 1.7 .

References

[AK00] Chris J. Ash and Julia F. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics. NorthHolland Publishing Co., Amsterdam, 2000.
[FS89] Harvey Friedman and Lee Stanley. A Borel reducibility theory for classes of countable structures. J. Symbolic Logic, 54(3):894-914, 1989.
[Fuc70] László Fuchs. Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36. Academic Press, New York-London, 1970.
[HTIK] Matthew Harrison-Trainor, Gregory Igusa, and Julia F. Knight. Some new computable structures of high rank. Preprint.
[HTMM] Matthew Harrison-Trainor, Russell Miller, and Antonio Montalbán. Borel functors and infinitary interpretations. Preprint.
[HTMMM] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Montalbán. Computable functors and effective interpretability. To appear in the Journal of Symbolic Logic.
[Mon] Antonio Montalbán. Computability theoretic classifications for classes of structures. To appear in the Proccedings of the ICM 2014.
[Mon15] Antonio Montalbán. A robuster Scott rank. Proc. Amer. Math. Soc., 143(12):54275436, 2015.
[Nad74] Mark Nadel. Scott sentences and admissible sets. Ann. Math. Logic, 7:267-294, 1974.
[Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quantifiers. In Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages 329-341. NorthHolland, Amsterdam, 1965.
[Ulm33] Helmut Ulm. Zur Theorie der abzählbar-unendlichen Abelschen Gruppen. Math. Ann., 107(1):774-803, 1933.
[URL] Douglas Ulrich, Richard Rast, and Michael C. Laskowski. Borel complexity and potential canonical scott sentences. Preprint.

Group in Logic and the Methodology of Science, University of California, Berkeley, USA

E-mail address: matthew.h-t@berkeley.edu
$U R L$: www.math.berkeley.edu/~mattht

