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Abstract. A computable structure A is decidable if, given a formula ϕ(x̄) of

elementary first-order logic, and a tuple ā ∈ A, we have a decision procedure to
decide whether ϕ holds of ā. We show that there is no reasonable classification

of the decidably presentable structures. Formally, we show that the index set of

the computable structures with decidable presentations is Σ1
1-complete. This

result holds even if we restrict out attention to groups, graphs, or fields. We

also show that the index sets of the computable structures with n-decidable

presentations is Σ1
1-complete for any n.

1. Introduction

In effective mathematics, we are concerned with computable structures. A math-
ematical structure—a set together with operations and relations on that set—is
computable if the set and the operations and relations on it are all computable.
For example, a computable field is one where the domain is a computable set and
the operations of addition and multiplication are computable. In a computable
structure, we can effectively answer quantifier-free questions, such as, for elements
a, b, and c of a field, whether a + b = b ⋅ c.

There are many other questions about a structure that we might want to an-
swer in a computable way. For example, in a field, we might want to be able to
decide whether a given polynomial has a root. In general, this is undecidable, but
sometimes, such as for algebraically closed fields, this can be done. In fact, given
a computable algebraically closed field, as a result of quantifier elimination we can
decide the answer to any question that can be formulated in elementary first-order
logic, i.e., as a logical formula using ∨, ∧, ¬, →, ∀, and ∃. In general, we say that
a computable structure is decidable if there is a method to compute, given ele-
ments a1, . . . , an and a formula ϕ of elementary first-order logic, whether ϕ holds
of a1, . . . , an. Every computable algebraically closed field is decidable.

An important phenomenon in computability theory is that there can be com-
putable structures which are isomorphic, but not computably isomorphic, so that
we cannot transfer computational properties from on to the other. For example,
the standard presentation of the linear order (N,<) is decidable. However, there
is also a computable copy of the same structure in which the successor relation is
not computable, and hence this copy is not decidable. (Here, a is a succesor of b
if and only if (∀c)[c < b ∨ c > a].) Though these two computable structures are
isomorphic, they are not computably isomorphic.

This paper is about the problem of characterizing those computable structures
which have a decidable presentation. This problem was probably first stated by
Goncharov, and has more recently been posed for example by Bazhenov at the
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2015 Mal’cev Meeting and Fokina at the 2016 ASL meeting in Storrs, CT. We will
show that there is no such characterization.

More formally, our main theorem is as follows. Fix an effective list of the dia-
grams of the (partial) computable structures.

Theorem 1.1. The index set

Id-pres = {i ∣ the ith computable structure is decidably presentable}
is Σ1

1-complete.

This theorem is proved in Section 4.
As a result, there is no possible reasonable characterization of the computable

structures with decidable presentations. What we mean is that there is no simpler
way to check whether a computable structureA has a decidable presentation than to
ask: Does there exists a decidable structure B and a classical isomorphism between
A and B? This requires searching through all possible isomorphisms, of which
there may be continuum-many, between A and B. (Contrast this with a very naive,
and incorrect, candidate for a characterization: A computable structure A has a
decidable copy if and only if there is a computable listing of the types it realizes. In
this case, we must look through the countably many possible computable listings
of types, and check whether they list the types in A. This requires only quantifiers
over natural numbers, and objects which can be coded by natural numbers.1) If
there were a simpler characterization of the computable structures with decidable
presentations, then one would expect that characterization to yield a simpler way
of checking whether a computable structure has a decidable presentation.

A similar approach was taken in [DKL+15], where it was shown that there is no
reasonable characterization of computable categoricity, and in [DM08], where it was
shown that there is no reasonable classification of abelian groups. This approach
originated with [GN02a]. See also [LS07, Fok07, CFG+07, FGK+15, GBM15a,
GBM15b].

1.1. Decidable presentability in familiar classes. What if we are interested
in a specific class of structures, such as fields, graphs, or groups? In the case of
some particular classes of structures—which are universal in a sense soon to be
described—it follows immediately from Theorem 1.1 that there is no classification
of the decidably presentable structures in that class.

Hirschfeldt, Khoussainov, Shore, and Slinko [HKSS02] showed that many classes
of structures—such as graphs and groups—are universal. What we mean when we
say that a class C of structures is universal is that for every structure A, there is a
structure B ∈ C such that A and B are effectively bi-interpretable. That is, each is
interpretable in the other using computable infinitary Σ1 formulas, in a compati-
ble way, and so for most computability-theoretic purposes, the two structures are
the same. Equivalently—see [HTMMM]—there is a computable bi-transformation
between copies of A and copies of B, i.e., there is a computable way to turn pre-
sentations of A into presentations of B, and vice versa, in a functorial way. We
note that this exact definition of a universal class did not appear in [HKSS02], but

1For some restricted classes of structures, such a characterization might be possible. For

example, Andrews [And14] showed that if M is a model of a decidable ω-stable theory with
countably many countable models, then M has a decidable copy if and only if all of the types

realized in M are recursive.
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comes from later work in [MPP+, Section 3] and [Mon, Definition 5.4]. (For groups,
we need to add finitely many constants to the language.)

It turns out, when we examine the proofs from [HKSS02], that the effective
bi-interpretations between a structure A and the corresponding graph (or group)
GA, use only elementary first-order formulas. (An effective bi-interpretation is, in
general, allowed to use infinitary formulas.) That means that a structure A is
decidable if and only if the corresponding graph (or group) GA is decidable.

Miller, Park, Poonen, Schoutens, and Shlapentokh [MPP+] recently showed that
the class of fields is also universal. Again, the bi-interpretations between a structure
and the corresponding field use only elementary first-order formulas.

It follows that one cannot characterize which graphs, groups, and fields are
decidably presentable.

Theorem 1.2. The index sets of the decidably presentable graphs, groups, and
fields are Σ1

1-complete.

Other familiar classes of structures, such as linear orders and boolean algebras,
are not universal, and so a similar argument does not work. It is possible that
such classes admit a characterization of the decidably presentable structures in
that class. For linear orders in particular, this question has already been raised:

Question 1.3 (Moses, see [CLLS00]). Can one characterize the linear orderings
which have a decidable copy?

We believe that the Friedman-Stanley [FS89] transformation T of structures into
linear orders preserves decidability, in the sense that A is decidable if and only if
T (A) is decidable. It would follow that the answer to this question is “no”.

Abelian groups are another class of structures which is not universal. However,
it is still an open question whether or not abelian groups are Borel complete.

Question 1.4. Can one characterize the torsion-free abelian groups which have a
decidable copy?

1.2. n-decidable structures. One can also ask whether a computable structure
has an n-decidable copy. An n-decidable structure is a structure in which we can
decide whether a formula ϕ, with n alternations of quantifiers, holds of a tuple
a1, . . . , a`. For each n, there are n-decidable structures which are have no n + 1-
decidable copies, and there is a structure which has n-decidable copies for all n,
but no decidable copy [CM98]. We say that a structure is n-presentable is it has
an n-decidable copy. There is no simpler characterization of the n-presentable
structures.

Theorem 1.5. For each n ∈ ω, the index set

In-pres = {i ∣ the ith computable structure is n-presentable}

is Σ1
1-complete.

The proof of Theorem 1.5 will be simpler than the proof of Theorem 1.1, and so we
will begin by proving Theorem 1.5 in Section 3. To prove Theorem 1.1, we must
also guess at Σ0

2 facts.
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1.3. Further questions. In addition to Questions 1.3 and 1.4 above, there are
many more questions to resolve. In [DKL+15], it was shown that the index set
of the computably categorical structures is Π1

1 complete. In [GBM15b], this was
extended to show that the index set of the computable structures with computable
dimension n is Π1

1-complete, for finite n. The case of n = ω is still open.

Question 1.6. What is the complexity of the index set of the computable struc-
tures with computable dimension ω?

In this paper, we considered structures which have one computable copy which
is decidable. One could also consider structures all of whose computable copies are
decidable. We call such a structure intrinsically decidable. One can, as usual, also
define a notion of relative intrinsic decidability: A structure is relatively intrin-
sically decidable if, for every isomorphic copy A of that structure, the elementary
diagram of A is computable in deg(A). By the uniform version of a theorem of Ash,
Knight, Manasse, and Slaman [AKMS89], and independently Chisholm [Chi90], a
computable structure A is relatively intrinsically decidable if and only if it has
a sort of quantifier elimination: Every elementary first-order definable subset of
A is (uniformly) definable by a computable infinitary Σ1 formula, and also by a
computable infinitary Π1 formula. One expects there to be structures which are
intrinsically decidable but not relatively intrinsically decidable, as there are, for ex-
ample, structures which are computably categorical but not relatively computably
categorical [Gon77]. Note that deciding whether a structure is relatively intrinsi-
cally decidable is arithmetic; however, one might guess that intrinsic decidability is
actually Σ1

1 complete.

Question 1.7. What is the complexity of the index set of the computable struc-
tures all of whose computable copies are decidable?

See also Question 4.18 which we state later after providing sufficient context.

2. Some useful lemmas

2.1. A sequence of structures. It is well-known that there are computable struc-
tures C∞ such that the index set of the computable structures which are isomorphic
to C∞ is Σ1

1-complete. A small modification of the same argument, which we will
repeat below in brief, shows that the same is true of decidable structures: There is a
decidable structure C∞ such that the index set of the decidable structures which are
isomorphic to C∞ is Σ1

1-complete. We will use these structures in the constructions
for Theorems 1.1 and 1.5.

To build the structure C∞ we will use the following lemma, which is probably
folklore; similar results appear in, for example, [Ash91].

Lemma 2.1. Given a computable linear order L, we can, uniformly in L, build a
decidable copy of ωω ⋅ (1 +L).

Proof. It is well-known that there is a decidable copy, which we will call W, of
ωω; we may also choose W so that W +W is decidable. Define A = W ⋅ (1 + L).
We represent elements of A as pairs (l,w) with l ∈ 1 + L and w ∈ W, ordered
lexicographically starting with l. We claim that A is decidable.

Indeed, given a tuple ā, break up ā into tuples ā1, . . . , ān where each element
of āi is of the form (li,w) for some w ∈ W, and l1 < ⋯ < ln. Let āi consist of the
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elements a1
1 < ⋯ < ami

1 , and let wji be such that aji = (li,wji ). Then (see Corollary
13.39 of [Ros82]) the complete type of ā is determined effectively by the elementary
first-order theories of the intervals

(−∞, a1
1], [a1

1, a
2
1], . . . , [am1

1 , a1
2], [a1

2, a
2
2], . . . , [am2

2 , a1
3], . . . , [amn

n ,∞).

Each interval [aji , a
j+1
i ] has the same order type as [wji ,w

j+1
i ] which is decidable,

as it is a definable subset of W. The order type of [ami

i , a1
i+1] is ωω ⋅ [li, li+1)+w1

i+1,
which has the same theory as ωω +w1

i+1 (see Theorem 6.21 of [Ros82]); this theory
is decidable. The interval (−∞, a1

1] has the same theory as either w1
1 (if l1 is smaller

than L) or ωω +w1
1 (if l1 ∈ L). Finally, the interval [amn

n ,∞) has the same theory
as ωω. Thus the type of ā is computable in A, and so A is decidable. �

Lemma 2.2. Let S be a Σ1
1 set. There is a decidable structure C∞ and a uniformly

decidable sequence of structures (Cn)n∈ω such that Cn ≅ C∞ if and only if n ∈ S. All
of these structures are in the same language.

Proof. Harrison [Har68] constructed a computable linear order H of order type
ωCK1 (1 + Q). From [CDH08, Lemma 5.2] or [GN02b, Theorem 4.4(d)], we get a
computable sequence of computable linear orders (Ln)n∈ω such that Ln is isomor-
phic to H if and only if n ∈ S. Then letting Cn be a decidable copy of ωω ⋅ (1+Ln),
we get a uniformly decidable sequence of structures (Cn)n∈ω. (We take C∞ to be a
decidable copy of H, which is isomorphic to ωω ⋅ (1 +H).) If Ln was well-founded,
so is Cn, and if Ln was isomorphic to H, then so is Cn. �

2.2. Building decidable structures from disjoint unions. In this section, we
will prove three lemmas about constructing a decidable structure by taking dis-
joint unions of other decidable structures. We will use these lemmas during the
construction.

Lemma 2.3. Let A1, . . . ,Ak be decidable structures. Then the disjoint union B of
A1, . . . ,Ak, with relations R1, . . . ,Rk picking out the domains of A1, . . . ,Ak respec-
tively, is also decidable. This is uniform.

Proof. It suffices to show that B is decidable with respect to the many-sorted logic
with sorts defined by R1, . . . ,Rk. The many-sorted logic has quantifiers which range
only over a single sort Ri, and the relations of a structure Ai are restricted to the
sort Ri. Indeed, it is easy to translate any formula in the single-sorted language of
B to an equivalent formula in the many-sorted language. In what follows, by an
Ai-formula we mean a formula involving only the sort Ai.

We can easily argue by induction on formulas that each formula ϕ in the many-
sorted language of B is equivalent to a boolean combination of Ai-formulas. For
example, if ϕ ≡ (∃x ∈ Rp)ψ, and (placing the boolean combination equivalent to ψ
in disjunctive normal form)

ψ ≡
r

⋁
i=1

k

⋀
j=1

θi,j

where θi,j is a Aj-formula, we get that

ϕ ≡
r

⋁
i=1

k

⋀
j=1

θ′i,j

where θ′i,p = (∃x ∈ Rp)θi,p and θ′i,j = θi,j if j ≠ p.
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Then given a formula ϕ in the many-sorted language of B, write ϕ as a boolean
combination of Ai-formulas:

ϕ ≡
r

⋁
i=1

k

⋀
j=1

θi,j

where θi,j is a Aj-formula. We can decide the truth of each θi,j as each Aj is
decidable, and hence we can decide the truth of ϕ. �

A slightly more complicated argument proves the following similar lemma.

Lemma 2.4. Let A1, . . . ,Ak be decidable structures. Then the disjoint union B of
A1, . . . ,Ak, with an equivalence relation E whose equivalence classes pick out the
structures Ai, is also decidable. This is uniform.

Proof sketch. The structure B is effectively bi-interpretable, using first-order for-
mulas, with the structure from the previous lemma after naming one element from
each of the k equivalence classes. �

The third, and final, lemma allows us to take the disjoint union of infinitely
many structures, as long as they are all elementarily equivalent.

Lemma 2.5. Let (Ai)i∈ω be a sequence of uniformly decidable structures. Suppose
that for each i and j, Ai ≡ Aj. Let B be the disjoint union of the Ai, with an
equivalence relation E whose equivalence classes pick out the structures Ai. Then
B is decidable. This is uniform.

Proof. View the structures as relational structures. Given a formula ϕ(x1, . . . , x`)
and a1, . . . , a`, we need to decide whether B ⊧ ϕ(a1, . . . , a`). Let n be the quantifier
depth of ϕ. Let B∗ be substructure of B which consists of those structures Ai
containing a1, . . . , a` and n other structures Ai. We claim that B ⊧ ϕ(a1, . . . , a`)
if and only if B∗ ⊧ ϕ(a1, . . . , a`). Since B∗ is decidable, uniformly in n, by the
previous lemma, we can decide whether B ⊧ ϕ(a1, . . . , a`). Thus B is decidable,
and this is uniform.

To see that B ⊧ ϕ(a1, . . . , a`) if and only if B∗ ⊧ ϕ(a1, . . . , a`), we can play the

Ehrenfeucht-Fras̈sé game with depth n. Denote by M r∼ N that Duplicator has
a winning strategy for the Ehrenfreucht-Fras̈seé game with r moves, i.e., that M
and N satisfy the same formulas with quantifier depth r. We want to show that
(B∗;a1, . . . , a`) n∼ (B;a1, . . . , a`). To prove this, it is more convenient to prove a
stronger claim

Claim 2.6. Given r and m with r +m ≤ n+ `, tuples x̄1 ∈ Aj1 , . . . , x̄m ∈ Ajm , all in
B∗, and ȳ1 ∈ Ak1 , . . . , ȳm ∈ Akm (with no repetition among the lists of the structures),

(B∗; x̄1, . . . , x̄m) r∼ (B; ȳ1, . . . , ȳm) if and only if for each i, (Aji ; x̄i)
r∼ (Aki ; ȳi).

From this, if we take r = n and (rearranging a1, . . . , a`) take

(a1, . . . , a`) = (x̄1, . . . , x̄m) = (ȳ1, . . . , ȳm)
with ji = ki for all i, then we immediately get that (B∗;a1, . . . , a`) n∼ (B;a1, . . . , a`)
as desired. So the proof of the claim will finish the proof of the lemma.

Proof of claim. The proof of this claim is by induction on r. For r = 0, x̄1, . . . , x̄m
satisfy the same atomic formulas in B∗ as ȳ1, . . . , ȳm do in B if and only if for each i,
x̄i ∈ Aji satisfies the same atomic formulas in Aji as ȳi does in Aki . Given r > 0, it is

clear that if (B∗; x̄1, . . . , x̄m) r∼ (B; ȳ1, . . . , ȳm) then for each i, (Aji ; x̄i)
r∼ (Aki ; ȳi).
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For the other direction, suppose that for each i, (Aji ; x̄i)
r∼ (Aki ; ȳi). Given y′ ∈ B,

we must find x′ ∈ B∗ such that (B∗; x̄1, . . . , x̄m, x
′) r−1∼ (B; ȳ1, . . . , ȳm, y

′). (The
other case—finding y′ ∈ B given x′ ∈ B∗—is similar and actually easier.)

Case 1. If y′ ∈ Aki for some i = 1, . . . ,m, then since (Aji ; x̄i)
r∼ (Aki ; ȳi), there

is x′ ∈ Aji such that (Aji ; x̄ix′)
r−1∼ (Aki ; ȳiy′). Thus, by the induction hypothesis,

(B∗; x̄1, . . . , x̄m, x
′) r−1∼ (B; ȳ1, . . . , ȳm, y

′).
Case 2. Otherwise, let km+1 be such that y′ ∈ Akm+1 . Since r +m ≤ n + `, we

can choose jm+1 different from j1, . . . , jm such that Ajm+1 is included in B∗. Since

Akm+1 ≡ Ajm+1 , we can find x′ ∈ Ajm+1 such that (Akm+1 , y
′) r−1∼ (Ajm+1 , x

′). We then

have, with x̄m+1 = x′ and ȳm+1 = y′, that (Aji ; x̄i)
r−1∼ (Aki ; ȳi) for i = 1, . . . ,m + 1

and that (r − 1) + (m + 1) ≤ n + `. So (B∗; x̄1, . . . , x̄m, x
′) r−1∼ (B; ȳ1, . . . , ȳm, y

′) by
the induction hypothesis. �

3. 1-presentable structures

In this section, we will prove the case n = 1 of Theorem 1.5: The index set of
1-presentable structures is Σ1

1-complete. The general case is essentially the same,
but restricting to the case n = 1 will make the proof more readable, and, in fact,
the case n ≥ 2 will follow from the proof of Theorem 1.1. (See Section 4.7.)

Fix a Σ1
1 set S. We must build a uniformly computable sequence of computable

structures (Mn)n∈ω such that Mn is 1-presentable if and only if n ∈ S. Fix, as in
Lemma 2.2, decidable structures Cn and C∞ such that Cn ≅ C∞ if and only if n ∈ S.
We will use Cn and C∞ in the construction of Mn. Also fix a computable listing
(Di)i∈ω of the (possibly partial) 1-diagrams of the 1-decidable structures.

The structures Mn will be the disjoint union of infinitely many structures
(Ai)i∈ω, each distinguished in Mn by some unary relation Pi. (We may assume
that each of the structures Di is a partial structure of this form.) There are two
properties that we want from the construction of Ai:

(1) If n ∈ S, then Ai will have a 1-decidable presentation uniformly in i.
(2) If n ∉ S and Di is a 1-decidable structure, then Ai will not be isomorphic

to the structure with domain Pi in the 1-decidable structure Di.
Thus, if n ∈ S, then we can build a 1-decidable presentation of Mn by building
1-decidable copies of each Ai. On the other hand, if n ∉ S, then Mn is not 1-
presentable as it cannot be isomorphic to any 1-decidable structure Di.

For the remainder of the construction, we can fix i. For simplicity, denote Ai
by A and let D be the structure with domain Pi in Di. So we want to build A so
that if n ∈ S, then A will have a 1-decidable presentation (which we can construct
uniformly), and if n ∉ S, then A is not isomorphic to D.

3.1. Σ0
1 labeling of 1-decidable structures. Given a 1-decidable structure A,

we will describe how to add labels to A which are Σ0
1 over the 1-diagram of A using

a construction which is essentially a Marker extension [Mar89]. Intuitively, what
we want to do is as follows. We want to be able to attach labels to elements of A
in a c.e. way—that is, so that at any stage, we can add a label to a node—so that
the resulting structure, with the labels attached, is also 1-decidable, and so that in
the 1-diagram of an isomorphic copy of A, we can enumerate the labels.

More formally, fix an infinite computable set L of labels. Given a sequence of
subsets X = (X`)`∈L of A, we want to define a three-sorted structure AX , whose
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first sort is just the structure A, as follows. We will refer to the sorts as A, S1,
and S2. The language of AX will be the language of A augmented with functions
f ∶S1 → A and g∶S2 → S1, a unary relation U ` ⊆ S1 for each ` ∈ ω, and a unary
relation R ⊆ S2.

For each element x of A, there will be infinitely many elements y of the second
sort S1 with f(y) = x. These will be partitioned into infinitely many disjoint sets
U ` for ` ∈ ω. Each element of S1 will be the pre-image, under f , of some x ∈ A.

For each element y of S1, there will be infinitely many elements z ∈ S2 with
g(z) = y, and each element of S2 will be the pre-image, under g, of some y ∈ S1.

For every x ∈ A, there will be infinitely many y ∈ f−1(x)∩U ` such that there are
infinitely many z ∈ g−1(y) with R(z), and infinitely many z ∈ g−1(y) with ¬R(z).
If x ∉ X`, this will be the case for all y ∈ f−1(x) ∩U `, but if x ∈ X`, then there will
also be infinitely many y ∈ f−1(x) ∩U ` such that for all z ∈ g−1(y), R(z).

The next three lemmas show that this construction does what we want it to do.

Lemma 3.1. Let A be a structure and let X = (X`)`∈L be subsets of A. The sets
X` are definable in AX by ∃∀ formulas, and these formulas are uniform in ` and
independent of A or X.

Proof. The set X` is definable as the subset of the first sort of AX defined by
(∃y ∈ S1) [f(y) = x ∧U `(y) ∧ (∀z ∈ S2)(g(z) = y → R(z))]. �

Lemma 3.2. Let A be a computable structure and let X = (X`)`∈L be a computable
sequence of codes for c.e. subsets of A. Then, uniformly in X and in the atomic
diagram of A, we can build a computable copy of AX .

Proof. The copy of AX we build will have the computable copy of A in the first
sort, the second sort will contain elements (x, `, s, t), and the third sort will contain
elements (x, `, s, t, u). We define

U ` = {(x, `, s, t) ∈ S1}
f ∶S2 → S1 defined by (x, `, s, t, u)↦ (x, `, s, t)
g∶S1 → A defined by (x, `, s, t)↦ x.

It only remains to define the relation R. Given s, t, and u, we will have R(x, `, s, t, u)
if and only if u is even or if u is odd and x enters X` exactly at stage s. �

Lemma 3.3. Let A be a 1-decidable structure and let X = (X`)`∈L be a computable
sequence of codes for c.e. subsets of A. Then, uniformly in X and in the 1-diagram
of A, we can build a 1-decidable copy of AX .

Proof. We can build a 1-decidable copy of AX by putting the 1-decidable copy
of A in the first sort, and defining the second and third sorts as in the previous
lemma. Given a tuple ā ∈ AX and an existential formula (∃ȳ)ϕ(x̄, ȳ), we want to
decide whether AX ⊧ (∃ȳ)ϕ(ā, ȳ). First, we may rewrite ϕ in the language where
we replace the language of A with the predicates

P θ(x1,...,xn) = {(a1, . . . , an) ∈ An ∶ A ⊧ θ(a1, . . . , an)}

where θ is an existential formula in the language of A. Next, we may assume that
ϕ is a conjunction of atomic formulas.
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We will show that (∃ȳ)ϕ(x̄, ȳ) is equivalent, in AX , to a quantifier-free formula
ψ(x̄) in an expanded language with the predicate

Q = {(x, `, s, t) ∈ S1 ∶ x ∉X`,ats}
which is only allowed to appear positively. Note that the predicates Q and P θ are
computable in AX , and so we can decide whether AX ⊧ ψ(ā), and hence whether
AX ⊧ (∃ȳ)ϕ(ā, ȳ).

Arguing by induction, it suffices to show that if ā is a tuple from AX , and
ϕ(x1, . . . , xn) is a quantifier-free formula in which Q appears only positively, then
(∃xn)ϕ(x1, . . . , xn) is equivalent in AX to a formula ψ(x1, . . . , xn−1) in which Q
appears only positively.

Since every element of A is the image of an element of S1 under g, and every
element of S1 is the image of an element of S2 under f , we may assume that
x1, . . . , xn are from the sort S2. We may write ϕ(x1, . . . , xn) in the following form:

P θ(y1,...,yn)(f(g(x1)), . . . , f(g(xn))) ∧
⎡⎢⎢⎢⎢⎣
⋀

i∈I(Q)

Q(g(xi))
⎤⎥⎥⎥⎥⎦

∧
⎡⎢⎢⎢⎢⎣
⋀

i∈I(U`)

U `(g(xi))
⎤⎥⎥⎥⎥⎦
∧
⎡⎢⎢⎢⎢⎣
⋀

i∈I(¬U`)

¬U `(g(xi))
⎤⎥⎥⎥⎥⎦
∧
⎡⎢⎢⎢⎢⎣
⋀

i∈I(R)

R(xi)
⎤⎥⎥⎥⎥⎦
∧
⎡⎢⎢⎢⎢⎣
⋀

i∈I(¬R)

¬R(xi)
⎤⎥⎥⎥⎥⎦

∧
⎡⎢⎢⎢⎢⎣
⋀

{i,j}∈J=1

xi = xj
⎤⎥⎥⎥⎥⎦
∧
⎡⎢⎢⎢⎢⎣
⋀

{i,j}∈J≠1

xi ≠ xj
⎤⎥⎥⎥⎥⎦

∧
⎡⎢⎢⎢⎢⎣
⋀

{i,j}∈J=2

g(xi) = g(xj)
⎤⎥⎥⎥⎥⎦
∧
⎡⎢⎢⎢⎢⎣
⋀

{i,j}∈J≠2

g(xi) ≠ g(xj)
⎤⎥⎥⎥⎥⎦

∧
⎡⎢⎢⎢⎢⎣
⋀

{i,j}∈J=3

f(g(xi)) = f(g(xj))
⎤⎥⎥⎥⎥⎦
∧
⎡⎢⎢⎢⎢⎣
⋀

{i,j}∈J≠3

f(g(xi)) ≠ f(g(xj))
⎤⎥⎥⎥⎥⎦
.

So that we can refer to it later, let χ(x1, . . . , xn) be the part of this formula after
P θ(f(g(x1)), . . . , f(g(xn))). We may assume that ϕ is looks consistent in the sense
that I(U `) and I(¬U `) are disjoint, I(R) and I(¬R) are disjoint, and so on.

Case 1. If {n, i} ∈ J=1 for some i, then (∃xn)ϕ(x1, . . . , xn) is clearly equivalent to
ϕ(x1, . . . , xn−1, xi).
Case 2. Otherwise, if {n, i} ∈ J=2 for some i, then (∃xn)ϕ(x1, . . . , xn) is equivalent
to

P θ(f(g(x1)), . . . , f(g(xn−1)), f(g(xi))) ∧Q(g(xi)) ∧ χ′(x1, . . . , xn−1)
if n ∈ I(¬R), and

P θ(y1,...,yn)(f(g(x1)), . . . , f(g(xn−1)), f(g(xi))) ∧ χ′(x1, . . . , xn−1)
otherwise, where χ′(x1, . . . , xn−1) is χ(x1, . . . , xn) with g(xn) replaced by g(xi)
everywhere, and any term involving only xn (but not g(xn), or f(g(xn))) deleted.

Case 3. Otherwise, if {n, i} ∈ J=3 for some i, then (∃xn)ϕ(x1, . . . , xn) is equivalent
to

P θ(y1,...,yn)(f(g(x1)), . . . , f(g(xn−1)), f(g(xi))) ∧ χ′(x1, . . . , xn−1)
where χ′(x1, . . . , xn−1) is χ(x1, . . . , xn) with f(g(xn)) replaced by f(g(xi)) every-
where, and any term involving only xn or g(xn) (but not f(g(xn))) deleted.
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Case 4. Otherwise, (∃xn)ϕ(x1, . . . , xn) is equivalent to

P (∃yn)θ(y1,...,yn)(f(g(x1)), . . . , f(g(xn−1))) ∧ χ′(x1, . . . , xn−1)

where χ′(x1, . . . , xn−1) is χ(x1, . . . , xn) with any term involving xn, g(xn), or
f(g(xn)) deleted. �

3.2. Overview of the construction. Recall that given a structure D, we want
to build A so that if n ∈ S, then A will have a 1-decidable presentation (which we
can construct uniformly), and if n ∉ S, then A is not isomorphic to D.

The structure A will actually be of the form BX for some sequence of subsets
X = (X`)`∈L of B. We will build the diagram of B in a computable way while also
enumerating the sets X`. (Though rather than saying that we put an element x
into X`, we will say that we put the label ` on x.) By Lemma 3.2, A = BX will be
a computable structure. At the end, to see that if n ∈ S then A has a 1-decidable
presentation, we will use Lemma 3.3. If D is going to be isomorphic to A = BX ,
then it will have to be of the form EY for a sequence of subsets Y = (Y`)`∈L of E ; by
Lemma 3.1, using the 1-diagram of D, we can compute E and enumerate the sets
Y`. So we will diagonalize against the 1-diagram of E together with an enumeration
of the sequence Y . To keep the construction as intuitive as possible, we will not
mention B and E . Instead, we will think of A and D as computable structures with
c.e. labels.

We will now describe the language and general form of A. There will be a set
N of nodes. To each node ν, we attach two other structures: a structure in the
language of Lemma 2.2 with domain Tν and a linear order with domain Wν . Tν
will be isomorphic to either Cn or C∞, and Wν will be isomorphic to one of ω, ω∗,
or ω∗ + ω. We call Tν the tag of ν, and we say that the elements of Tν are the
T -elements of ν. To each node ν, we associate the structure consisting of Tν and
Wν . We call this structure the ν-component of A.

Note that if n ∉ S, and one node ν is tagged with Cn, and a second node ν′ is
tagged with C∞, then there is no automorphism of A taking ν to ν′, as Cn and C∞
are not isomorphic. On the other hand, if n ∈ S, then the ν-component and the ν′-
component might be isomorphic. The linear orders Wν will be used to diagonalize
against 1-presentations; in a 1-presentation, a maximal (or minimal) element of a
linear order will be distinguished by a universal formula, while in a computable
presentation we can always change our mind between building a copy of ω or ω∗.

To the nodes ν, and to the T -elements, we attach labels which are Σ0
1 over the 1-

diagram in the sense described in Section 3.1. We have infinitely many labels `k and
a distinguished label L. These labels will be used in the same way that labels are
used to build computably categorical structures ([DKL+15]) or structures of finite
computable dimension ([Gon80]), and we suggest that it might help the reader who
is not familiar with this technique read one of these papers before proceeding. At
each stage s, each node ν which is of the form ρ or σ◻i (these will be defined later),
and each of their T -elements, will have two labels `k which are unique to them;
one label will be the primary label and the other the secondary label. There will
be other labels in the bag which hold of every element. The bag will begin empty.
The nodes τ◻i,s, and their T -elements, will all be labeled in the same was as ρ was

at stage s (except that they may also be labeled with L). The nodes ρ and σ◻i , and
their T -elements, will never be labeled L.



THERE IS NO CLASSIFICATION OF THE DECIDABLY PRESENTABLE STRUCTURES 11

While it looks like D is copying A, we will periodically add the primary labels
of each element to the bag, labeling every element with them, and then give each
element a new unique label. What were the secondary labels will become the new
primary labels, and the new labels will be the new secondary labels. If infinitely
often we add the primary labels to the bag then at the end of the construction
every element will be labeled with the same labels—those in the bag. But at every
finite stage of the construction, every element will be distinguished.

3.3. The construction of A. We begin at stage s = 0. To start, put into A the
distinguished node ρ, and the other nodes (σ↤i ), (σ↦i ), and (σ↔i ), and (τ↤i,0) and

(τ↦i,0). At later stages of the construction, we will add new nodes (τ↤i,s) and (τ↦i,s)
for other values of s.

For the node ρ: Let Tρ contain a copy of Cn, and let Wρ begin with a single
element. For each node σ◻i : Let Tσ◻i contain a copy of C∞, and let Wσ◻i

contain a

linear order which depends on ◻: for ◻ =↤, set Wσ↤i
= ω∗; for ◻ =↦, set Wσ↦i

= ω;

and for ◻ =↔, set Wσ↔i
= ω∗ + ω. The nodes τ◻i,0 will be the same as the nodes σ◻i ,

except that Tτ◻i,0 will contain a copy of Cn instead of C∞. For every node ν other

than ρ, the ν-component of A will be a 1-decidable structure. (Note also that there
are no relations that hold between different components.) Indeed, as soon as we
add a node ν (other than ρ) to the domain, we will immediately completely decide
Tν and Wν . Later, we may add labels to the elements, but since the labels are Σ0

1

over the 1-diagram, this is 1-decidable.

ρ

Cn

ω, ω∗, or
ω∗ + ω

σ↤i

C∞

ω∗

σ↦i

C∞

ω

σ↔i

C∞

ω∗ + ω

τ↤i,s

Cn

ω∗

τ↦i,s

Cn

ω

Assign, to each of the nodes ρ and σ◻i , and to each of their T -elements, two
unique labels `k. Label the τ◻i,0 in the same way as ρ. It will always be true at

each stage s that every node ρ and σ◻i and each of their T -elements will have two
unique labels that distinguish them from every other such element. No nodes will
be labeled by L at this point. The bag begins empty.

Certain stages will be expansionary stages. The expansionary stages are those
where we get more evidence that A is isomorphic to D. The stage 0 is an expan-
sionary stage by definition. At each expansionary stage s, we will have a number
scope(s) which measures how much of the structures A and D we are looking at.
Begin with scope(0) = 0.

At each stage s, we will have a target, target(s), for ρ. The target is a node of
D which we think is the image, under isomorphism, of ρ. We will try to make Wρ

different from the target. We do this by choosing a direction, direction(s), for ρ at
stage s, which is either left or right. If the direction is left, then we are trying to
build Wρ to be a copy of ω∗; if it is right, then we are trying to build a copy of
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ω. We will update the target and direction only at expansionary stages. At every
stage, expansionary or not, we will add a single element to Wρ depending on the
direction at that stage. Thus Wρ will end up being isomorphic to ω, ω∗, or ω∗ +ω.

The general idea of the construction is as follows, when D is a total 1-decidable
structure, in each of the two cases n ∈ S and n ∉ S. If n ∉ S, then Cn and C∞ are not
isomorphic. So the node ρ is fixed by every automorphism of A. If we can identify
the image of ρ in D, and have it be our target for all sufficiently large stages, then
we will diagonalize against D by making Wρ different from the target in D. Of
course, the only thing distinguishing ρ from the σ◻i is that it is tagged with Cn
instead of C∞, and these two structures may look very similar. This is where we
use the labels: In A, we give ρ a label that distinguishes it from all of the other
nodes, and so D must produce a node which looks similar; we use this node as the
target. Then, if D copies the labels we put on A, we can force it to also tag the
target node with Cn, making our diagonalization successful. Of course, in the limit,
everything ends up with the same labels; and the r◻i,s are labeled L, so that they
can be distinguished from ρ.

If n ∈ S, then Cn and C∞ are isomorphic. First, if there are infinitely many ex-
pansionary stages, then all of the nodes and T -elements end up tagged the same. If
Wρ is isomorphic to ω, then the ρ-component is isomorphic to each σ↦i -component;
so we could have built a copy of A without ever having built the ρ-component! The
σ↦i -components are actually 1-decidable, since we decide everything about them
(except the labels, which are Σ0

1 over the 1-diagram) as soon as we add them to the
structure. Thus we can build a 1-decidable copy of A. The same argument works
if Wρ is isomorphic to ω∗ or to ω∗ + ω. Unfortunately, if there are only finitely
many expansionary stages, then the nodes and T -elements may end up having dif-
ferent labels. But in this case, after the last expansionary stage s, we never add
any more labels, and so the ρ-component will be isomorphic to each τ↦i,s- or τ↤i,s-
component, and again we could have built a 1-decidable copy of A by not building
the ρ-component.

Construction at stage s. At stage s, so far we have built A[s − 1]. The first thing
we do at stage s is to decide whether the stage s is expansionary. Let s∗ be the
last expansionary stage. Stage s is expansionary if there are:

(1) nodes ν0, . . . , νr of A[s − 1], containing among them the first scope(s∗)
nodes of A[s − 1];

(2) T -elements ā0 ∈ Tν0 , . . . , ār ∈ Tνr , containing among them the first scope(s∗)
elements of each of these components;

(3) nodes µ0, . . . , µr of B[s], containing among them the first scope(s∗) nodes
of D[s]; and

(4) T -elements d̄0 ∈ Tµ0 , . . . , d̄r ∈ Tµr , containing among them the first scope(s∗)
elements of each of these components

such that

● the atomic types of ν0, . . . , νr; ā0, . . . , ār in A[s−1] and µ0, . . . , µr; d̄0, . . . , d̄r
in D[s] are the same, and

● each of the elements from ν0, . . . , νr; ā0, . . . , ār has the same labels inA[s−1]
as the corresponding elements from µ0, . . . , µr; d̄0, . . . , d̄r have in D[s].

Otherwise, stage s is not expansionary. If stage s is expansionary, let scope(s) ≥
scope(s∗) + 1 be large enough that ν0, . . . , νr are among the first scope(s) nodes of
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A, ā0, . . . , ār are among the first scope(s) elements of their components, µ0, . . . , µr
are among the first scope(s) nodes of D, and d̄0, . . . , d̄r are among the first scope(s)
elements of their components.

If stage s is expansionary, then continue by updating the target followed by
renewing labels as described below. If the stage s is not expansionary, the target
and direction are the same as they were at the last expansionary stage. At all stages,
expansionary or not, we finish by adding a new element to Wρ. If direction(s) =
right, add the new element to the right of all existing elements. Otherwise, if
direction(s) = left, add the new element to the left of the existing ones. In this way
we obtain the structure A[s].
Updating the target. In D[s], find the least node, if one exists, which is labeled
exactly by the labels of ρ (and so not by L). Set target(s) to be this node. (If no
such element exists, target(s) is undefined and direction(s) = right.)

Now, look at the linear order Wtarget(s). If it has a greatest element (i.e., an
element which the 1-diagram of D[s] says is the greatest element), set direction(s) =
right. Otherwise, set direction(s) = left.

Renewing labels. Recall that s∗ was the previous expansionary stage. First, apply
the label L to each node τi,s∗ . Second, each of the nodes ρ and σ◻i and their T -
elements have two labels which only of themselves and which are not in the bag.
Add each of the primary labels to the bag. The secondary labels becomes the
primary labels. Then, label each of these elements with each label from the bag
along with a new unique secondary label.

Build new nodes τ↤i,s and τ↦i,s tagged with copies of Cn. Attach a copy of ω∗ or ω
to each of these nodes respectively. Label these nodes and their T -elements in the
same way that ρ and its T -elements are currently labeled.

3.4. The verification.

Lemma 3.4. Wρ is isomorphic to either ω, ω∗, or ω∗ + ω. These three cases
correspond, respectively, to having direction(s) = right for all but finitely many
s, direction(s) = left for all but finitely many s, and direction(s) = right and
direction(s) = left for infinitely many s each.

Proof. At each stage s we add a single element to Wρ on either the left or right
hand side, depending on the direction. �

Note that the direction can only change at an expansionary stage, so that if
there are only finitely many expansionary stages, Wρ is isomorphic to either ω or
ω∗. This is why we only add nodes τ↦i,s and τ↤i,s, but not τ↔i,s.

Lemma 3.5. If A is isomorphic to D, then there are infinitely many expansionary
stages.

Proof. Suppose to the contrary that there is a last expansionary stage s∗, and that
A is isomorphic to D at the end of the construction, say by an isomorphism f . Then
after stage s∗, we never add any more nodes intoA, and we never add any new labels
to any elements. Let µ0, . . . , µr be the first scope(s∗) nodes of A together with the
inverse images, under f , of the first scope(s∗) nodes of D. Let ā0 ∈ Tµ0 , . . . , ār ∈ Tµr

be the first scope(s∗) elements of these components, together with the inverse
images, under f , of the first scope(s∗) elements of Tf(µ0), . . . , Tf(µr). Then, for
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sufficiently large s, µ0, . . . , µr; ā0, . . . , ār and f(µ0), . . . , f(µr); f(ā0), . . . , f(ār) have
the same labels in A[s−1] and D[s] respectively. Such a stage s is expansionary. �

Lemma 3.6. If there are infinitely many expansionary stages, then every node ρ
or σ◻i and their T -elements have exactly the same labels. Each τ◻i,s is labeled by L.

Proof. This lemma is easily seen from the way the labels are renewed in the con-
struction. �

Lemma 3.7. Let s be an expansionary stage and suppose that a ∈ A and d ∈ D
are nodes which are among the first scope(s) nodes of of A and D respectively (or
T elements which are among the first scope(s) elements of their components, and
are associated to nodes which are among the first scope(s) nodes), and so that a
has the same labels in A[s−1] as d does in D[s]. Then for any expansionary stage
s∗ ≥ s, either a and d have the same labels in A[s∗ − 1] and D[s] respectively, or
one of them is labeled L.

Proof. It suffices to show that if s∗ ≥ s is an expansionary stage at which a and d
have the same labels in A[s∗ − 1] and D[s] respectively, and s∗∗ > s∗ is the next
expansionary stage, then either a and d have the same labels in A[s∗∗ − 1] and
D[s∗∗] or one of them is labeled L.

Let `k1 be the primary label of a in A[s∗ − 1], and let `k2 be its secondary label.
Then by assumption, d is also labeled by `k1 and `k2 in D[s∗]. During stage s∗,
`k2 becomes the primary label of a, and a gets a new secondary label `k3 . Now at
all stages t, s∗ < t < s∗∗, we do not add any labels to elements of A. In A[s∗∗ − 1],
the only elements labeled `k2 are either labeled the same way as a, or labeled L.
Since s∗∗ is an expansionary stage, and d is among the first scope(s) < scope(s∗∗)
nodes of D if it is a node (or the first scope(s) elements of its component, which is
among the first scope(s) components of D, if d is a T -element), there is an element
a′ ∈ A[s∗∗ − 1] which is labeled in the same way as d. As d is labeled `k2 , a′ is
labeled `k2 , and so they must both be labeled in the same way as a, or be labeled
L. �

Lemma 3.8. Suppose that A and D are in fact isomorphic. Let s be an expansion-
ary stage, and let ν and µ be nodes of A and D respectively, which are among the
first scope(s) nodes of those structures, and assume that neither are ever labeled L.
If, at stage s, ν and µ are labeled in the same way in A[s−1] and D[s] respectively,
then Tν ⊆ A and Tµ ⊆ D are isomorphic.

Proof. Let s0 = s, s1, s2, . . . list the expansionary stages after s. By the previous
lemma, at each expansionary stage si, ν and µ are labeled in the same way in
A[si − 1] and D[si] respectively.

Since A and D are isomorphic, by Lemma 3.5 there are infinitely many expan-
sionary stages. Given i, define a partial isomorphism fi∶Tν → Tµ, as follows. Put a
T -element a, which is among the first scope(si) elements of Tν , into the domain of
fi if there is d a T -element of µ, which is among the first scope(si) elements of Tµ,
such that a and d have the same labels in A[si − 1] and D[s] respectively. In this
case, set fi(a) = d. (Note that there can be at most one such d for a given a, as no
two elements of the same component of A[si − 1] are labeled in the same way.)

Claim 3.9. If i < i′, then fi ⊆ fi′ .
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Suppose that fi(a) = d. Then a and d are labeled in the same way in A[si −
1] and D[si] respectively, and are among the first scope(si) elements of Tν and
Tµ respectively. Since ν and µ are never labeled L, neither are a and d at the
expansionary stage si′ ; we will not label a by L, and if d was labeled L, then si′

could not be an expansionary stage. So by the previous lemma, at the stage si′ , a
and d are labeled in the same way. Thus we will define fi′(a) = d.

Let f = ⋃i∈ω fi.
Claim 3.10. f is one-to-one.

If f was not one-to-one, then for some i, we would have fi(a1) = fi(a2) = d. So
then, in A[si − 1], a1 and a2 are labeled in the same way; but they are both in the
same component, and so this cannot happen.

Claim 3.11. f is total and onto.

To see that f is total, fix a ∈ Tν . For some sufficiently large i, a will be among
the first scope(si) elements of Tν . Then, at the next expansionary stage si+1, there
will have to be some µ′;d′ corresponding (in the sense that they witness that si+1

is a true stage) to ν;a and ν′ corresponding to µ. Now since ν and µ are labeled
in the same way, and µ and ν′ are labeled in the same way, ν and ν′ are labeled
in the same way in A[si+1 − 1]. From the construction, we see that Tν and Tν′ are
identically either copies of Cn or C∞. (The nodes ν and ν′ might be, for example, ρ
and τ↦0,si .) Thus there is a′ ∈ Tν′ which corresponds to a ∈ Tν , and since a is among
the first scope(si) of Tν , a′ is among the first scope(si) elements of Tν′ . Also, ν′

is among the first scope(si) nodes of A. Thus there is d ∈ Tµ which is labeled in
the same way as a′, which is labeled in the same way as a; hence we would set
fi+1(a) = d.

To see that f is onto, a similar but not identical argument works. Fix d ∈ Tµ. For
some sufficiently large i, a will be among the first scope(si) elements of Tν . Then,
at the next expansionary stage si+1, there will have to be some ν′;a′ corresponding
to µ;d and µ′ corresponding to ν. Now since ν and µ are labeled in the same way,
and µ and ν′ are labeled in the same way, ν and ν′ are labeled in the same way in
A[si+1 − 1]. From the construction, we see that Tν and Tν′ are identically either
copies of Cn or C∞. Thus there is a ∈ Tν which corresponds to a′ ∈ Tν′ . Then d is
labeled the same way as a′, which is labeled in the same way as a; hence we would
set fi+1(a) = d.

Claim 3.12. f is an isomorphism.

It suffices to show that each fi is a partial isomorphism. At stage si, let a0, . . . , ar
be the elements in the domain of fi, and let d0 = fi(a0), . . . , dr = fi(ar). Since si
is an expansionary stage, there must be elements a′0, . . . , a

′
r of A[si − 1] which are

labeled in the same way, and have the same atomic type as d0, . . . , dr in D[si]. But
then a′0, . . . , a

′
r are labeled in the same way, in A[si − 1], as a0, . . . , ar. We can

see from the construction that a0, . . . , ar and a′0, . . . , a
′
r must then have the same

atomic type in A[si − 1]. (It is possible that a0, . . . , ar are not equal to a′0, . . . , a
′
r,

for example if the former are in Tρ and the latter are in Tτ↦0,si−1
.) Hence fi is a

partial isomorphism.

This finished the proof of the lemma. �

Lemma 3.13. If n ∉ S, then A is not isomorphic to D.



16 MATTHEW HARRISON-TRAINOR

Proof. Suppose to the contrary that A was isomorphic to D via an isomorphism f .
Then by Lemma 3.5 there are infinitely many expansionary stages.

Note that ρ is the only node of A which is both not labeled L and which is
tagged Cn. Since Cn and C∞ are not isomorphic, no node σ◻i is tagged Cn, and since
there are infinitely many expansionary stages, each τ◻i,s is labeled L.

Let d0, d1, d2, . . . list the elements of D, and let di = f(ρ). Let t be a stage after
which each of d0, . . . , di−1, if it is the image, under f , of a node τ◻i,s or one of its
T -elements, is labeled L; thus, if one of these elements ever becomes labeled L, it
does so by stage t. Suppose that t is also large enough that ρ and di are among the
first scope(t) nodes of A and D respectively. We claim that for all expansionary
stages s > t, target(s) = di.

Suppose to the contrary that there is an expansionary stage s at which target(s) ≠
di. Since ρ is among the first scope(t) nodes of A, there is at least one dj ∈ D[s]
among the first scope(s) nodes of D which has the same labels as ρ at stage s; since
target(s) ≠ di, there is one such dj ≠ di.

Then either di and ρ are labeled differently at stage s, or there is a node dj ,
j < i, among the first scope(s) nodes of of D, which is labeled in the same way as
di at stage s (and hence both are labeled in the same way as ρ).

In the first case—if di and ρ are labeled differently at stage s—then there is
another node ν ≠ ρ of A[s − 1], which is among the first scope(s) nodes of A,
which is labeled in the same way as di is in D[s]. Note that di is not labeled L,
as f(ρ) = di. So by Lemma 3.8, Tdi is isomorphic to Tν ; and, since ν ≠ ρ, and
ν is not labeled L, ν is of the form σ◻i and so Tν is isomorphic to C∞. This is a
contradiction, as di = f(ρ) and Tρ is isomorphic to Cn.

In the second case—if there is a node dj , j < i, among the first scope(s) nodes of
D, which is labeled in the same way as di at stage s—by Lemma 3.8, Tdj and Tdi are
both isomorphic to Tρ = Cn and not labeled L. But then D cannot be isomorphic
to A, as ρ is the only node ν of A not labeled L and with Tν isomorphic to Cn

So for all expansionary stages s > t, target(s) = di. If Wf(ρ) = ω∗, then at some
point the greatest element of Wf(ρ) is enumerated into D, and the 1-diagram says
that this is the greatest element. Then, from some sufficiently large expansionary
stage on, the direction is always right. Thus Wρ = ω. On the other hand, if
Wf(ρ) = ω or ω∗ + ω, then there is never a greatest element of Wf(ρ), and so the
direction is always left. Then Wρ = ω∗. In all cases, Wρ is not isomorphic to Wf(ρ),
a contradiction. �

Lemma 3.14. If n ∈ S, then A has a 1-decidable presentation which we can con-
struct uniformly.

Proof. Since n ∈ S, Cn ≅ C∞. We claim that if we run the construction without
building the node ρ and its component, we get a structure A− which is 1-decidable
and isomorphic to A. To see that A− is isomorphic to A, there are two cases. First,
if there are infinitely many expansionary stages then, by Lemma 3.5, ρ and its
T -elements, and each node σ◻i and their T -elements, all have the same labels. So ρ
and its component is actually isomorphic to each of the σ◻i and their components for
the appropriate choice of ◻. Since there are infinitely many such nodes, removing
ρ does not change the isomorphism type.

On the other hand, if there are only finitely many expansionary stages, then let
s∗ be the last expansionary stage. After that stage, we never add any more labels.
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Then ρ and its component is isomorphic to each of the τ◻i,s∗ and their components

for some ◻ ∈ {↤,↦}.
Now we will argue that A− is 1-decidable. By Lemma 3.3, it suffices to show

that the reduct of A− to the language without the labels is 1-decidable (in fact
this reduct is decidable), from which it will follow that A− itself, with the labels,
is 1-decidable. The rest of the proof of this lemma will be in this smaller language
without the labels.

Whenever we add a new node ν to A−, we immediately decide whether Tν = Cn or
Tν = C∞, and whether Wν is isomorphic to ω, ω∗, or ω∗ +ω. These structures—Cn,
C∞, ω, ω∗, and ω∗ + ω—all have decidable presentations. So the structure which
is the disjoint union of Tν and Wν is decidable, uniformly in ν, by Lemma 2.3.
Since this disjoint union is essentially (i.e., up to effective bi-interpretability using
finitary ∆0 formulas) the ν-component, the ν-component is decidable.

By Lemma 2.5, the following five structures are decidable:

(1) The disjoint union of the σ◻i -components, for a fixed ◻ ∈ {↤,↦,↔}.
(2) The disjoint union of the τ◻i,s-components, for a fixed ◻ ∈ {↤,↦}.

Then by Lemma 2.4, the disjoint union of these five structures is also decidable.
This is effectively bi-interpretable, using finitary ∆0 formulas, to A−, which is thus
decidable. �

Lemmas 3.13 and 3.14 are exactly what we wanted from the construction, and
complete the proof of Theorem 1.5.

4. Decidably presentable structures

In this section, we will add a guessing argument to the construction from the
previous section to show that the index set of decidably presentable structures is Σ1

1-
complete (Theorem 1.1). The new issue that we have to deal with is that the system
of labeling which we used previously no longer works with decidable structures, as
we cannot make labels which are Σ0

1 over the elementary diagram. Instead of
labeling elements with existential facts, we will label them by the existence of a
non-principal type, which is a Σ0

2 fact over the elementary diagram. Then, when
examining the decidable structure D against which we are diagonalizing, we must
guess at the labels.

The argument will also complete the proof of Theorem 1.5. See Section 4.7.

4.1. Σ0
2 labeling of decidable structures. This subsection will be analogous

to Section 3.1. Once again, fix an infinite computable set L of labels. Given a
decidable structure A and a sequence X = (X`)`∈L of subsets of A, we want to
build a two-sorted structure AX , whose first sort is just the structure A, which
codes X in a Σ0

2 way over the elementary diagram of A.
We can build AX as follows. AX will again be two-sorted, with the first sort

consisting of A. We will call the second sort S. The language of AX will be the
language of A augmented with a function f ∶S → A, a unary predicate U ` ⊆ S for
each label `, and infinitely many unary relations Ri ⊆ S, i ∈ ω.

The second sort S will be partitioned into the pre-images f−1(x) of the elements
x ∈ A, and each fibre f−1(x) will be partitioned into infinitely many disjoint sets
U `. If i < i′, and Ri′ holds of an element, then Ri will hold of that element, and
for each x, `, i there will be infinitely many elements of f−1(x) ∩ U ` satisfying Rj
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for j < i but not Ri. There is a unique non-principal type p` in f−1(x) ∩ U` of an
element satisfying Ri for all i.

We will define the relations Ri such that, given x ∈ A and `, if x ∈X` then there
is a single realization of the non-principal type p` in f−1(x) ∩ U `, and otherwise
there will be no realizations of p` in f−1(x) ∩U `.

Lemma 4.1. Let A be a structure and let X = (X`)`∈L be a sequence of Σ0
2 sub-

sets of A. The sets X` are definable in AX by computable formulas of the form
∃x⋀i∈I ψi(x, ⋅), with the ψi quantifier-free. These formulas are computable uni-
formly in `, and are independent of A or X.

Proof. The set X` is definable as the subset of the first sort of AX defined by
(∃y) [f(y) = x ∧U `(y) ∧⋀iRi(y)]. �

As a result, if A is computable, then the sets X` are uniformly Σ0
2.

Lemma 4.2. Let A be a computable structure and let X = (X`)`∈L be a uniform
sequence of indices for Σ0

2 subsets of A. Then, uniformly in X and in the atomic
diagram of A, we can build a computable copy of AX .

Proof. Let X` be defined by

x ∈X` ⇐⇒ (∃y) [(x, y) ∈XΠ
` ]

where XΠ
` is Π0

1 and, if x ∈ X`, then there is a unique y witnessing this. We can
find such a set XΠ

` uniformly in a Σ0
2 index for X`.

The copy of AX we build will have the decidable copy of A in the first sort,
and the second sort will contain elements (x, `, s, t) and (x, `,∞, t) with x from
the first sort and `, s, and t in ω. We will have f(x, `, s, t) = f(x, `,∞, t) = x and
U `(x,m, s, t) if and only if m = `. Given s, t, and i, we will have Ri(x, `, s, t) if and
only if s < i. We will have Ri(x, `,∞, t) if and only if (x, t) ∈ XΠ

` at stage i. This
defines a computable copy of AX . �

Lemma 4.3. Let A be a decidable structure and let X = (X`i)i∈ω be a uniform
sequence of indices for Σ0

2 subsets of A. Then, uniformly in X and in the elementary
diagram of A, we can build a the elementary diagram of a decidable copy of AX .

Proof. We can build a decidable copy of AX by putting the decidable copy of A in
the first sort, and defining the second sort as in the previous lemma. This copy of
AX is decidable.

For each `, let AX[`] be the reduct of AX which discards all of the predicates
Ri except for R0, . . . ,R`. We claim that AX[`] is decidable uniformly in `. From
this it will follow that AX is decidable.

These reducts are quite simple structures: Given x ∈ A, there are infinitely many
elements y of f−1(x), each of which each have, for each 0 ≤ i ≤ `+1, infinitely many
elements in g−1(y) with Rj for j < i but not Ri. Thus any two such elements y
are isomorphic. A simple argument, in the style of Lemma 3.3 (or Lemma 4.10 to
follow) but without having to introduce the predicate Q, shows that every formula is
equivalent in AX[`] to a quantifier-free formula in the language with the additional
predicate

P θ(y1,...,yn)(x1, . . . , xn) = {(a1, . . . , an) ∈ An∶A ⊧ θ(a1, . . . , an)}
where θ is any formula in the language of A. �
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4.2. The guesses. In this section, fix a (possibly partial) decidable structure D,
and a computable sequence X = (X`)`∈L of indices of Σ0

2 subsets of D, just as one
might obtain from a decidable copy of DX as in Lemma 4.1. (Even if D is a partial
structure, we can still obtain a sequence of Σ0

2 sets in this way.) We will describe a
way of guessing at membership in the sets X`. Write

x ∈X` ⇐⇒ (∃n)(∀m) [(x,n,m) ∈Xc
` ]

for some uniformly computable predicates Xc
` . Fix an enumeration of the tuples

(x, `, n), where x ∈ D, ` is a label, and n ∈ ω. Assume that in this enumeration, if
(x, `, n) comes before (x, `, n′), then n < n′.

At each stage s, we will have a guess Gs at which elements look like they are in
X`, and at what the witnesses are. Gs will be a finite set of tuples (x, `, n). For
each (x, `, n) ∈ Gs, we will have that for all m < s, (x,n,m) ∈Xc

` ; the converse will
not necessarily be true. If, for all m < s, (x,n,m) ∈ Xc

` , and n is the least such
witness, then we say that x appears to be labeled ` at stage s with witness n. Note
that if, at some stage, x appears to be labeled ` with witness n, and then at some
later stage, x does not appear to be labeled ` with witness n, then x can never
again appear to be labeled ` with witness n. It is, however, possible for x to not
appear to be labeled ` with witness n, then later to appear to be labeled ` with
witness n, and then later to again not appear to be labeled ` with witness n.

Begin with G0 = ∅. At stage s, we will have defined Gs∗ for s∗ < s. We must now
define Gs. If there is some (x, `, n) ∈ Gs−1 so that x does not appear to be labeled
` at stage s with witness n, then we have made a mistake. In this case, let t < s
be greatest such that for each (x, `, n) ∈ Gt, x appears to be labeled ` at stage s
with witness n, and let Gs = Gt. Otherwise, if there are no mistakes to correct, let
(x, `, n) be least (in our fixed enumeration) such that (x, `, n) ∉ Gs−1 but x appears
to be labeled ` at stage s with witness n. Let Gs = Gs−1 ∪ {(x, `, n)}. (If no such
tuple exists, let Gs = Gs−1.) Note that there is no other m ≠ n with (x, `,m) ∈ Gs−1.

We will borrow some notation from Ash’s α-systems [Ash86b, Ash86a] to talk
about the true path. Write s ≤0 t if and only if s ≤ t, and s ≤1 t if s ≤ t and Gs ⊆ Gt.
Lemma 4.4. If s < t < u, and s ≤1 u, then s ≤1 t.

Proof. Suppose to the contrary that s ≰1 t, so that Gs ⊈ Gt. We may assume that t
is the least such. So Gs ⊆ Gt−1. Since Gs ⊈ Gt, we can see from the definition of Gt
that there is (x, `, n) ∈ Gs so that x does not appear to be labeled ` at stage t with
witness n. By choice of t, at stage t− 1, x appeared to be labeled ` with witness n.
So, at stage u, that x cannot appear to be labeled ` with witness n, and so (x, `, n)
cannot be in Gu. So s ≰1 u. �

We say that a stage s is a true stage if, for all t > s, s ≤1 t.

Lemma 4.5. There are infinitely many true stages.

Proof. Assume that there is a greatest true stage s. There is some least t such that
s + 1 ≰1 t. Since s is a true stage, Gs ⊆ Gs+1,Gt. By choice of t, Gs+1 ⊈ Gt; by the
minimality of t, Gs+2, . . . ,Gt−1 ⊈ Gt as well. Then we see from the construction
that Gt = Gs. Thus t ≤1 u for all u > t, contradicting the choice of s. �

We call the sequence s0 < s1 < s2 < ⋯ of true stages the true path of the con-
struction.

Lemma 4.6. If s is a true stage, and t ≤1 s, then t is also a true stage.
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Proof. Suppose that t ≤1 s. Then, by Lemma 4.4, t ≤1 s
∗ for all s∗ with t ≤ s∗ ≤ s;

and since s ≤1 s
∗ for all s∗ ≥ s, t ≤1 s

∗ for all s∗ ≥ t. �

Define Xs
` = {x ∣ (∃n) (x, `, n) ∈ Gs}. Note that if s ≤1 t, then Xs

` ⊆Xt
` . The next

lemma will show that the set X` is the union, along the true stages, of the sets Xs
` .

Lemma 4.7. X` = ⋃i∈ωXsi
` .

Proof. Note that if x ∉ X`, then for all n, there is m such that (x,n,m) ∉ Xc
` . Fix

n, and let m be such that (x,n,m) ∉ Xc
` . Thus, for all stages s >m, (x, `, n) ∉ Gs;

so, for any true stage t, (x, `, n) ∉ Gt. Since this is true for all n, x ∉ Xs
` for any

true stage s.
On the other hand, suppose that x ∈ X`, but for all true stages s, x ∉ Xs

` . Since
x ∈ X`, for some n, for all m we have (x,n,m) ∈ Xc

` . And since x ∉ Xs
` for all true

stages s, (x, `, n) ∉ Gs for all true stages s. We may assume that (x, `, n) is the
least such tuple. For some true stage s, for all (x′, `′, n′) less than (x, `, n) in our
chosen enumeration, we will either have that x′ does not appear to be labeled `′

as witnessed by n′ at all true stages after s (and so (x′, `′, n′) can never be in Gt
for any t ≥ s) or that x′ ∈ X`′ (with least witness n′) and (x′, `′, n′) ∈ Gs (so that
(x′, `′, n′) ∈ Gt for all t > s). So x appears to be labeled ` as witnessed by n at all
stages after s. Then at stage s + 1, we have Gs+1 = Gs ∪ {(x, `, n)} and s + 1 is a
true stage. So x ∈Xs+1

` , a contradiction. �

We will say that a node or T -element x from D[s] is labeled ` (at stage s) if
x ∈Xs

` .

4.3. ∃∀ Marker extensions. Given a structure A together with a relation X on
A, we will describe how to make a certain kind of Marker extension of (A,X).
We will define a three-sorted structure M(A,X) whose first sort is a copy of the
structure A. Let n be the arity of X. We will refer to the sorts as A, S1, and
S2. The language of M(A,X) will be the language of A augmented with functions
f ∶S1 → An and g∶S2 → S1 and a unary relation R ⊆ S2.

For each element x̄ ∈ An, there will be infinitely many elements y of the second
sort S1 with f(y) = x̄. Each element of S1 will be the pre-image, under f , of some
x̄ ∈ An. For each element y of S1, there will be infinitely many elements z ∈ S2 with
g(z) = y, and each element of S2 will be the pre-image, under g, of some y ∈ S1.

For every x̄ ∈ An, there will be infinitely many y ∈ f−1(x̄) such that there are
infinitely many z ∈ g−1(y) with R(z), and infinitely many z ∈ g−1(y) with ¬R(z).
If x̄ ∉ X, this will be the case for all y ∈ f−1(x̄), but if x̄ ∈ X, then there will also
be infinitely many y ∈ f−1(x̄) such that for all z ∈ g−1(y), R(z).

Lemma 4.8. X is definable in M(A,X) by an ∃∀ formula.

Proof. X is defined by the formula

x̄ ∈X ⇐⇒ (∃y) [f(y) = x̄ ∧ (∀z) [f(z) = y → R(z)]] . �

Lemma 4.9. If A is computable and X is Σ0
2, then we can build a computable copy

of M(A,X) uniformly in A and X.

Proof. Let X be defined by

x̄ ∈X ⇐⇒ (∃y)(∀z) [(x̄, y, z) ∈Xc]
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where Xc is computable and, if x̄ ∈ X, then there are infinitely many y witnessing
this (and, for all y, if there is z with (x̄, y, z) ∉ Xc, then there are infinitely many
such z). We can find such a set Xc uniformly in a Σ0

2 index for X.
The copy of M(A,X) we build will have the decidable copy of A in the first

sort, the second sort will contain elements (x̄, s), and the third sort will contain
the elements (x̄, s, t). We will have f(x̄, s) = x̄ and g(x̄, s, t) = (x̄, s). It only
remains to define the relation R. Given s and t, we will have R(x̄, s, t) if and only
if (x̄, s, t) ∈Xc. This defines a computable copy of M(A,X). �

Lemma 4.10. If (A,X) is decidable, then we can build a decidable copy of M(A,X)
uniformly in the elementary diagram of (A,X).

Proof. The copy of M(A,X) we build will have the decidable copy of A in the first
sort, the second sort will contain elements (x̄, s), and the third sort will contain
elements (x̄, s, t). We will have f(x̄, s) = x̄, and f(x̄, s, t) = (x̄, s). Define R(x̄, s, t)
if t is odd, or if s and t are even and x̄ ∈X.

We claim that this is decidable. Given a tuple ā ∈ M(A,X) and a formula
ϕ(x̄), we want to decide whether M(A,X) ⊧ ϕ(ā). First, we may rewrite ϕ in the
language where we replace the language of A with the predicates

P θ(y1,...,yn) = {(a1, . . . , an) ∈ An ∶ A ⊧ ϕ(a1, . . . , an)}
where θ is a formula, possibly involving quantifiers, in the language of A.

We will show that ϕ(x̄) is equivalent, in M(A,X), to a quantifier-free formula
ψ(x̄) in an expanded language with the predicate

Q = {(x̄, s) ∈ S1 ∶ s is odd, t is odd, or x̄ ∉X}
and the predicates P θ(y1,...,yn), where θ is now allowed to contain the predicate R.
Note that the predicates Q and P θ are computable in M(A,X), and so we can
decide whether M(A,X) ⊧ ψ(ā), and hence whether M(A,X) ⊧ ϕ(ā).

Arguing by induction, it suffices to show that if ϕ(x1, . . . , xn) is a quantifier-free
formula possibly involvingQ and P θ (where θ may involve R), (∃xn)ϕ(x1, . . . , xn) is
equivalent in M(A,X) to a quantifier-free formula ψ(x1, . . . , xn−1). The argument
is essentially the same as Lemma 3.3, though f(g(xn)) is now a tuple rather than
a single element. �

4.4. Overview of the construction. As before, fix a Σ1
1 set S. Given D a 2-

decidable structure, we want to build a structure A so that, if n ∈ S, we can
uniformly build a decidable copy of A, and if n ∉ S, then A is not isomorphic to D.
(We could have taken D to be decidable, but by taking it to be 2-decidable we will
simultaneously prove the n ≥ 2 case of Theorem 1.1. See Section 4.7.)

The structure A we construct will be of the form [M(B,⪯)]X , where ⪯ is a binary
relation and X = (X`)`∈L is a sequence of subsets of B (and hence of M(B,⪯)).
We will build B in a computable way, with ⪯ and the sets X` defined via Σ0

2

approximations. By Lemmas 4.2 and 4.9, A = [M(B,⪯)]X will be computable.
To see that if n ∈ S then A has a decidable presentation, we will use Lemmas
4.3 and 4.10. If D is a total 2-decidable structure which is isomorphic to A, then
D = [M(E ,≾)]Y where ≾ is a binary relation on E and Y = (Y`)`∈L is a sequence of
subsets of E . Since D is 2-decidable, by Lemma 4.8, ≾ is computable. However, the
sets Y` may not be computable; so we will have to use the approximations from the
Section 4.2. Recall from that section that we can find a sequence of computable
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sets Y s` such that, if s0 < s1 < s2 < ⋯ are the true stages, Y` = ⋃i∈ω Y si` . Recall also
that we say that a node or T -element x from D[s] is labeled ` (at stage s) if x ∈ Y s` .
Thus, the labels which hold at any true stage are actual labels of elements of D.

We will describe how to build the structure B, together with Σ0
2 approximations

of ⪯ and the sets X = (X`)`∈L; for this latter sequence, we will simply talk about
labeling elements of B by a label `, by which we mean that we put that element
into the set X`. Then we will set A = [M(B,⪯)]X .

The structure B will have nodes ρ, σ◻i , and τ◻i,s, each of which has attached to
it a copy Tν of Cn or C∞, and a linear order Wν which is isomorphic to ω, ω∗, or
ω∗ + ω. The linear orders Wν will given by the binary relation ⪯ with respect to
which we take the Marker extension; thus the linear orders are not themselves in
the language of B, but rather are definable by an ∃∀ formula in M(B,⪯).

We again have infinitely many labels `k and a distinguished label L, but now
these labels will be Σ0

2 over the elementary diagram of A.

4.5. Acting for a guess. At each stage s, our construction will build a partial
structure B[s], together with a binary relation ⪯s and labels `sk and Ls.

If s < t, then B[t] will extend B[s]. It will not necessarily be true that if x is
labeled ` at stage s, then it will be labeled ` at stage t, or that if x ⪯s y, then x ⪯t y.
If, in fact, s ≤1 t, then ⪯s will extend ⪯t, and anything labeled ` at stage s will still
be labeled ` at stage t.

Note that by Lemma 4.4, if s < t < u, s, t ≤1 u, then s ≤1 t. Thus, this last
requirement need only be checked at stage u for the greatest t < u with t ≤1 u.

Stage 0. Begin at stage 0 with B[0] as follows. In B[0], there will be nodes ρ and
σ◻i for ◻ ∈ {↤,↦,↔}. We have Tρ = Cn and Tσ◻i = C∞. We put a single element in

Wρ, and in Wσ◻i
we put a linear order ⪯ isomorphic to either ω or ω∗, depending

on whether ◻ is ↦ or ↤.
Unlike before, we will not immediately add infinitely many nodes τ◻i,0, but rather

will “schedule” two such nodes (one for each of ◻ =↦ and ◻ =↤) to be added at
each stage. We do, at stage 0, create an infinite reserve of nodes which will, at
some later stage, become one of the τ◻i,s. To each of these nodes ν in the reserve,
we have Tν be a copy of Cn, and Wν a linear order isomorphic to ω for half of the
nodes, and ω∗ for the other half.

To each node or T -element x associated to a node ρ or σ◻i , we choose two unique
labels `1 and `2, as primary and secondary labels, and label x with them.

Set scope(0) = 0.

Action at stage s. Let s1, . . . , sn < s be the previous stages with si ≤1 s. We say that
these stages are the s-true stages, and if they were expansionary stages, then we
say that they are s-true expansionary stages. Let s∗ be the last s-true expansionary
stage.

At stage s, so far we have built B[s−1], ⪯s−1 and certain labels `s−1 on B[s−1].
The first thing we need to do is to fix any errors that we may have made since the
stage sn. So we begin stage s with the order ⪯sn and only the labels which held at
stage sn; any changes to ⪯ or the labels after stage sn and up to, and including,
stage s − 1 are discarded. Also, return all of the nodes τ◻i,s′ , for sn < s′ < s, to the
reserve.

Now we need to decide whether the stage s is expansionary. Stage s is expan-
sionary if there are:



THERE IS NO CLASSIFICATION OF THE DECIDABLY PRESENTABLE STRUCTURES 23

(1) nodes ν0, . . . , νr of A[sn − 1], containing among them the first scope(s∗)
nodes of A;

(2) T -elements ā0 ∈ Tν0 , . . . , ār ∈ Tνr , containing among them the first scope(s∗)
elements of each of these components;

(3) nodes µ0, . . . , µr of B[s], containing among them the first scope(s∗) nodes
of D; and

(4) T -elements d̄0 ∈ Tµ0
, . . . , d̄r ∈ Tµr

, containing among them the first scope(s∗)
elements of each of these components

such that:

● the atomic types of ν0, . . . , νr; ā0, . . . , ār inA[sn−1] and µ0, . . . , µr; d̄0, . . . , d̄r
in D[sn] are the same, and

● each of the elements from ν0, . . . , νr; ā0, . . . , ār has the same labels in A[sn−
1] as the corresponding elements from µ0, . . . , µr; d̄0, . . . , d̄r have in D[sn].

Otherwise, stage s is not expansionary. If stage s is expansionary, let scope(s) ≥
scope(s∗) + 1 be large enough that ν0, . . . , νr are among the first scope(s) nodes of
A, ā0, . . . , ār are among the first scope(s) elements of their components, µ0, . . . , µr
are among the first scope(s) nodes of D, and d̄0, . . . , d̄r are among the first scope(s)
elements of their components.

If stage s is expansionary, then continue by updating the target followed by
renewing labels as described below. If the stage s is not expansionary, the target
and direction are the same as they were at the last s-true expansionary stage.

At all stages, expansionary or not, we finish by adding a new element to the
linear order ⪯ in Wρ. In B[sn], finitely many of the elements of Wρ are bear some
relation ⪯, and these are linearly ordered. If direction(s) = right, pick the least
element x of Wρ which does not bear any such relation, and put this new element
to the right of the linear order we have built so far. Otherwise, if direction(s) = left,
do the same but add the new element to the left. This defines ⪯s.

Let s∗ be the last s-true expansionary stage. Take two nodes, which we call τ↤s,s∗
and τ↦s,s∗ , from the reserve (with Wη isomorphic to ω∗ and ω respectively). Label
these with the same labels as ρ.

Updating the target. In D[s], find the least node, if one exists, which is labeled
exactly by the labels of ρ (and not by L). Set target(s) to be this node. (If no such
element exists, target(s) is undefined and direction(s) = right.)

Now, look at the linear order Wtarget(s). If it has a greatest element, set
direction(s) = right. Otherwise, set direction(s) = left. We can recognize whether
an element x of Wtarget(s) is the greatest element by asking whether for all y, x â y
(where x â y is definable by a ∀∃ formula by Lemma 4.8). This is a ∀∃ fact, and
so we can ask the 2-diagram of D.

Renewing labels. Recall that s∗ was the previous expansionary stage. First, apply
the label L to each node τ◻i,s∗ . Second, each of the nodes ρ and σ◻i and their
T -elements have two labels which only of themselves and which are not in the
bag. Add each of the primary labels to the bag. The secondary labels become the
primary labels. Then, label each of these elements with each label from the bag
along with a new unique secondary label.

4.6. Verification. Let s0 < s1 < s2 < ⋯ be the true path of the approximation of the
labels of D, i.e., of Y = (Y`)`∈L. During the construction, we defined a computable
structure B = ⋃s B[s]. We also defined a Σ0

2 relation ⪯= ⋃i∈ω ⪯si along the true
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stages, and a sequence of Σ0
2 subsets X = (X`)`∈L of B, where X` = ⋃i∈ωXsi

` and
Xs
` consists of the elements of B which were labeled ` at stage s. To see that ⪯ and

the X` are in fact Σ0
2 sets, note that the set of true stages is a Π0

1 subset of ω: s is
a true stage if and only if, for all t > s, s ≤1 t. Then, for example, x ⪯ y if and only
if there is a true stage s such that x ⪯s y. Thus we can define A = [M(B,⪯)]X .

The construction ends up being essentially the same as the 1-decidable case along
the true stages. Note that ⪯ and X were defined so that:

(1) An element x ∈ B labeled ` in A if and only if it was labeled ` at some true
stage s.

(2) A pair of elements x, y ∈ B have x ⪯ y if and only if x ⪯s y at some true
stage s.

The proofs of the following lemmas end up being almost exactly the same as proofs
of the corresponding lemmas in the 1-decidable case, except that we talk only about
true stages. We will repeat the statements of the lemmas, with the modifications
to refer only to true stages.

Lemma 4.11. (Wρ,⪯) is isomorphic to either ω, ω∗, or ω∗ + ω. These three
cases correspond, respectively, to having direction(s) = right for all but finitely
many true stages s, direction(s) = left for all but finitely many true stages s, and
direction(s) = right and direction(s) = left for infinitely many true stages s each.

We say that a true stage which is also an expansionary stage is a true expan-
sionary stage.

Lemma 4.12. If A is isomorphic to D, then there are infinitely many true expan-
sionary stages.

Lemma 4.13. If there are infinitely many true expansionary stages, then every
node ρ or σ◻i and their T -elements have exactly the same labels. Each τ◻i,s is labeled
by L.

Lemma 4.14. Let s be a true expansionary stage and suppose that a ∈ A and d ∈ D
are nodes which are among the first scope(s) nodes of A and D respectively (or
T -elements which are among the first scope(s) elements of their components, and
associated to nodes which are among the first scope(s) nodes), and so that a has
the same labels in A[s − 1] as d does in D[s]. Then for any expansionary stage
s∗ ≥ s, either a and d have the same labels in A[s∗ − 1] and D[s] respectively, or
one of them is labeled L.

Lemma 4.15. Suppose that A and D are in fact isomorphic. Let s be a true
expansionary stage, and let ν and µ be nodes of A and D respectively, which are
among the first scope(s) nodes of those structures, and assume that neither are
ever labeled L at a true stage. If, at stage s, ν and µ are labeled in the same way
in A[s − 1] and D[s] respectively, then Tν ⊆ A and Tµ ⊆ D are isomorphic.

Lemma 4.16. If n ∉ S, then A is not isomorphic to D.

Lemma 4.17. If n ∈ S, then A has a decidable presentation which we can construct
uniformly.

These last two lemmas complete the proof.
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4.7. The n ≥ 2 case of Theorem 1.5. Note that we built A while diagonalizing
against a 2-decidable structure D. So in fact we have shown that

(Σ1
1,Π

1
1) ≤1 (Id−pres, I2−pres).

That is, for any Σ1
1 set S, there is a computable function f such that

n ∈ S Ô⇒ the f(n)th computable structure has a decidable presentation

and

n ∉ S Ô⇒ the f(n)th computable structure has no 2-decidable presentation.

This proves the n ≥ 2 case of Theorem 1.5.

Question 4.18. Is it true that (Σ1
1,Π

1
1) ≤1 (Id−pres, I1−pres)?
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