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Abstract. We survey some recent results in the theory of measurable
graph combinatorics. We also discuss applications to the study of hy-
perfiniteness and measurable equidecompositions.

1. Introduction

Measurable graph combinatorics focuses on finding measurable solutions
to combinatorial problems on infinite graphs. This study involves ideas and
techniques from combinatorics, ergodic theory, probability theory, descrip-
tive set theory, and theoretical computer science. We survey some recent
progress in this area, focusing on the study of locally finite graphs: graphs
where each vertex has finitely many neighbors. We also discuss applications
to the study of hyperfiniteness of Borel actions of groups, and measurable
equidecompositions.

Without any constraints such as measurability conditions, combinatorial
problems on locally finite graphs often simplify to studying their restriction
to finite subgraphs. This is the case with the problem of graph coloring.
Recall that if G = (V,E) is a graph, a (proper) Y -coloring of G is a map
c : V → Y so that for every two adjacent vertices {x, y} ∈ E, the colors
assigned to these two vertices are distinct: c(x) ̸= c(y). The chromatic
number χ(G) of G is the smallest cardinality of a set Y so there is a Y -
coloring of G. A classical theorem of De Bruijn and Erdős states that
for a locally finite graph G, the chromatic number of G is equal to the
supremum of the chromatic number of all finite subgraphs of G. That is,
χ(G) = supfinite H ⊆ G χ(H). The proof of this theorem is a straightforward
compactness argument using the Axiom of Choice.

In contrast, many phenomena can influence measurable chromatic num-
bers beyond just the constraints imposed by finite subgraphs. We illustrate
this change in behavior with a simple example. Let S1 be the circle, let
T : S1 → S1 be an irrational rotation, and let µ be Lebesgue measure on
S1. Consider the graph GT with vertex set S1 and where x, y are adjacent if
T (x) = y or T (y) = x. Every vertex in GT has degree 2 and every connected
component of GT is infinite. Hence, by alternating between two colors, it is
easy to see that the classical chromatic number of GT is 2. However, there
can be no Lebesgue measurable 2-coloring of GT . Suppose c : S1 → {0, 1}
was a Lebesgue measurable coloring of GT , and A0 = {x : c(x) = 0} and
A1 = {x : c(x) = 1} were the two color sets. Then since the coloring must
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alternate between the two colors, we must have T (A0) = A1, and since T
is measure preserving and A0 and A1 are disjoint and cover S1, we there-
fore have λ(A0) = λ(A1) = 1

2 . However, the transformation T 2 is also an

irrational rotation and hence T 2 is ergodic, meaning any set invariant under
T 2 must be null or conull. Since T 2(A0) = A0, A0 must be null or conull.
Contradiction!

In this paper we focus on the study of combinatorial problems on Borel
graphs: graphs where the set V of vertices is a standard Borel space and
where the edge relation E is Borel as a subset of V × V . In the setting
where each vertex has at most countably many neighbors this is equivalent
to saying that there are countably many Borel functions f0, f1, . . . : V → V
that generate G in the sense that x E y if and only if fi(x) = y for some
i. The equivalence follows from the Lusin-Novikov theorem [30, 18.15]. An
important example of a Borel graph is the following type of Schreier graph.
If a is a Borel action of a countable group Γ on a standard Borel space X
and S is a symmetric set of generators for Γ, then let G(a, S) be the graph
on the vertex set V = X where x, y ∈ V are adjacent if there is a γ ∈ S such
that γ · x = y. For example, the graph associated to the irrational rotation
described above is a graph of this form.

For more comprehensive surveys of this area, the reader should consult
the papers [33] and [46]. A notable recent development we will not discuss
is the connections that have been found between measurable combinatorics
and the study of distributed algorithms in theoretical computer science,
particularly the LOCAL model. This model of computing takes place on a
large graph where each vertex represents a computer which is assigned a
unique identifier, and each edge is a communication link. These processors
execute the same algorithm in parallel, communicating with their neighbors
in rounds to construct a global solution to some combinatorial problem.
Recent work [4] [5] [6] [18] has established some precise connections between
measurable combinatorics and LOCAL algorithms which have already led to
new theorems in both areas (see e.g. [3] and [4]).

2. Measurable colorings

If G is a Borel graph, we define the Borel chromatic number χB(G) of G
to be the smallest cardinality of a standard Borel space Y so that there is
a Borel measurable Y -coloring of G. We clearly have that χ(G) ≤ χB(G)
where χ(G) is the classical chromatic number ofG. Borel chromatic numbers
were first studied in a foundational paper of Kechris, Solecki, and Todorcevic
[35].

Let G = (V,E) be a graph. If x ∈ V is a vertex, we let N(x) =
{y : {x, y} ∈ E} denote the set of neighbors of x. The degree of x is the
cardinality of N(x). We say that a graph is ∆-regular if every vertex has
degree ∆. A basic result about graph coloring is that given any finite graph
G of finite maximum degree ∆, there is a ∆ + 1-coloring of G. This is easy
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to see by coloring the vertices of G one by one. If we have a partial coloring
of G, then any uncolored vertex x has at most ∆ neighbors so there must
be a color from the set of ∆ + 1 colors we can use to extend this partial
coloring to x. The analogous fact remains true about Borel colorings:

Theorem 2.1 (Kechris, Solecki, Todorcevic [35, Proposition 4.6]). If G is a
Borel graph of finite maximum degree ∆, then G has a Borel ∆+1-coloring.

One method of proving this theorem is to adapt the greedy algorithm
described above. Recall that a set of vertices is independent if it does not
contain two adjacent vertices. First, we may find a countable sequence of
Borel sets An such that each An is independent, and their union is all vertices⋃

nAn = V (G). Then we can iteratively construct a coloring of G in count-
ably many steps where at step n we color all the elements of An the least
color not already used by one of its neighbors. In general, the connection
between algorithms for solving combinatorial problems and measurable com-
binatorics is deep. Many techniques for constructing measurable colorings
are based on algorithmic ideas, since algorithms for solving combinatorial
problems will often yield an explicitly definable solutions to them.

The upper bound given by Theorem 2.1 is tight; a complete graph on ∆+1
vertices has maximum degree ∆ and chromatic number ∆+1. Surprisingly,
the upper bound of Theorem 2.1 is also optimal even in the case of acyclic
Borel graphs. Hence, for bounded degree Borel graphs, the Borel chromatic
number and classical chromatic number may be very far apart since any
acyclic graph has classical chromatic number at most 2.

Theorem 2.2 (Marks [40]). For every finite ∆ there is an acyclic Borel
graph of degree ∆ with no Borel ∆-coloring.

The graphs used to establish Theorem 2.2 are quite natural, and arise
from Schreier graphs of actions of free products of ∆ many copies of Z/2Z.
Theorem 2.2 is proved using Martin’s theorem of Borel determinacy [43]
which states that in any infinite two player game of perfect information
with a Borel payoff set, one of the two players has a winning strategy. The
direct use of Borel determinacy to prove this theorem leads to an interesting
question of reverse mathematics since Borel determinacy requires a great
deal of set theoretic power to prove: the use of uncountably many iterates
of the powerset of R [20]. We currently do not know of any simpler proof of
Theorem 2.2 that avoids the use of Borel determinacy or can be proved in
second order arithmetic (which suffices for most theorems of descriptive set
theory).

Problem 2.3. Is Theorem 2.2 provable in the theory Z2 of full second-order
arithmetic?

Recently, Brandt, Chang, Greb́ık, Grunau, Rozhoň, and Vidnyánszky [6]
have shown that characterizing the set of Borel graphs of maximum degree
∆ ≥ 3 that have no Borel ∆ + 1-coloring is as hard as possible in a precise
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sense: the set of such graphs is Σ1
2 complete. Here Σ1

2 completeness is a
logical measurement of the complexity of this problem. The proof of their
theorem combines the techniques of [41] with earlier work of Todorcevic
and Vidnyánszky [51] proving Σ1

2 completeness for the set of locally finite
Borel graphs generated by a single function that have finite Borel chromatic
number. In contrast to the work of [6] for ∆ ≥ 3, in the case ∆ = 2,
a dichotomy theorem of Carroy, Miller, Schrittesser, and Vidnyánszky [8]
characterizes the 2-colorable Borel graphs in a simple way as those for which
there is no Borel homomorphism from a canonical non-Borel-2-colorable
graph known as L0.

This type of theorem–proving it is hard to characterize the set of graphs
with some combinatorial property–is familiar in finite graph theory via com-
putational complexity theory. For example, it is a well-known theorem that
the set of finite graphs that are k-colorable for k ≥ 3 is NP-complete. Indeed,
there are some surprising newly found connections between computational
complexity theory and complexity in measurable combinatorics. Thornton
[50] has used techniques adapted from the celebrated CSP (constraint satis-
faction problem) dichotomy theorem [7] [54] in theoretical computer science
to bootstrap the results of [6] to show many other natural combinatorial
problems on locally finite Borel graphs are either Σ1

2 complete or a Π1
1. The

CSP dichotomy theorem concerns a certain class of natural problems in NP:
general constraint satisfaction problems like graph coloring with k colors,
k-SAT, or more generally computing the set of finite structures X that have
a homomorphism to a given fixed finite structure D. The CSP dichotomy
states that all such constraint satisfaction problems are either in P (like
2-coloring or 2-SAT), or they are NP-complete (like 3-coloring or 3-SAT).

The results in [6] rule out any simple theory for understanding Borel
chromatic number for locally finite Borel graphs in general. In contrast, if
we weaken our measurability condition to study µ-measurable colorings with
respect to some Borel probability measure µ instead of Borel colorings, the
theory of µ-measurable colorings appears to have a much closer connections
to finite graph theory. If µ is a Borel measure on the vertex set of a Borel
graph G, let χµ(G) be the least size of a set Y so there is a µ-measurable
coloring of G. So χ(G) ≤ χµ(G) ≤ χB(G), since every Borel function is
µ-measurable.

For finite graphs of maximum degree ∆, a theorem of Brooks characterizes
those connected graphs which have chromatic number of ∆ + 1. They are
precisely the complete graphs on ∆ + 1 vertices, and odd cycles in the
case ∆ = 2. Analogously, we have the following generalization of Brooks’s
theorem for µ-measurable colorings:

Theorem 2.4 (Conley, Marks, Tucker-Drob [9]). Suppose that G is a Borel
graph with degree bounded by a finite ∆ ≥ 3. Suppose further that G contains
no complete graph on ∆+ 1 vertices. If µ is any Borel probability measure
on V (G), then G admits a µ-measurable ∆-coloring.
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Several important open problems in descriptive set theory concern whether
there is a difference between being able to find a Borel solution to a problem
versus being able to find a µ-measurable solution with respect to every Borel
probability measure µ (e.g. the hyperfiniteness vs measure hyperfiniteness
problem [32, Problem 8.29]). Theorem 2.2 and Theorem 2.4 are encouraging
in this context because they point the way towards tools that may be able
to resolve these types of questions.

The proof of Theorem 2.4 is based on a technique for finding one-ended
spanning subforests in Borel graphs: acyclic subgraphs on the same vertex
set where each connected component has exactly one end. More recently,
these techniques for finding one-ended spanning subforests were applied to
prove new results in the theory of cost: a real valued invariant of countable
groups arising from their ergodic actions [10].

Bernshteyn has substantially strengthened Theorem 2.4 by showing for k
within a factor of

√
∆ of ∆, there is a µ-measurable k-coloring of G if and

only if there is any k-coloring of G.

Theorem 2.5 (Bernshteyn [4]). There is a ∆0 so that if G is a Borel graph
with finite maximum degree ∆ ≥ ∆0 and µ is a Borel probability measure
on V (G), then if c satisfies c ≤

√
D − 5/2, then G has a ∆ − c-coloring if

and only if G has a µ-measurable ∆− c-coloring.

The above results give cases where the µ-measurable chromatic number
behaves similarly to the classical chromatic number. These two quantities
may still differ by a large amount, however. Let Fn be the free group on n
generators and let Sn ⊆ Fn be a free symmetric generating set. Let an be the
action of Fn on the space [0, 1]Fn via the Bernoulli shift : (γ ·x)(δ) = x(γ−1δ)
restricted to its free part. Let Gn = G(an, Sn) be the Schreier graph of
this action, and let µn = λFn be the product of Lebesgue measure λ on
[0, 1]. Since Gn is acyclic, the classical chromatic number is χ(Gn) = 2.
However, χµn(Gn) ≥ n

log 2n which can be shown using results about the

size of independent sets in random 2n-regular graphs and an ultraproduct
argument. This argument was first suggested by [38]; see [33] for a detailed
proof. Bernshteyn has recently proven an upper bound on χµn(Gn) which is
within a factor of two of this lower bound [2]. However, it remains an open
problem to compute the precise rate of growth of χµn(Gn).

Bernshteyn’s Theorem 2.5 and the above upper bound on χµn(Gn) are
based on an adaptation of the powerful Lovász Local Lemma (LLL) to the
setting of measurable combinatorics. The LLL is a tool of probabilistic
combinatorics which can show the existence of objects which are described
by constraints that are local in the sense that each constraint is independent
of all but a small number of other constraints, and each constraint has a
high probability of being satisfied. Precisely, the symmetric LLL states
that if A1, . . . , An are events in a probability space which each occur with
probability at most p, each event Ai is independent of all but at most d of
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the other events, and ep(d+1) ≤ 1, then there is a positive probability none
of these events occur.

The LLL is a pure existence result, and since the desired object typically
exists with exponentially small probability, it was a major open problem to
find an algorithmic way to quickly find satisfying assignments where none of
the events A1, . . . , An happen. In particular, a naive attempt to randomly
sample from the probability distribution until a solution is found would
take at least exponential time. In a breakthrough result in 2009, Moser and
Tardos [44] gave an efficient randomized algorithm that can quickly compute
satisfying assignments for the LLL.

Adaptations of the Moser-Tardos algorithm and the LLL to the setting
of measurable combinatorics began with work of Kun [31], who used a ver-
sion of the Moser-Tardos algorithm to find spanning subforests to prove a
strengthening of the Gaboriau-Lyons [21] theorem in ergodic theory. More
recently, Csoka, Grabowski, Mathe, Pikhurko, and Tyros [17] have proved
a Borel version of the symmetric LLL for Borel graphs of subexponential
growth, and Bernshteyn has proved µ-measurable versions for Bernoulli
shifts of groups, and probability measure preserving Borel graphs [2] [4].
These results, combined with the large literature in combinatorics using
the LLL to construct colorings of graphs, are the main tool in the proof of
Theorem 2.5.

It is known that there cannot be a Borel version of the symmetric LLL for
bounded degree Borel graphs in general [13]. Indeed, the existence of such a
theorem combined with standard coloring techniques using the LLL would
contradict Theorem 2.2. However, an interesting special case remains open:
a Borel version of the symmetric LLL for Borel Schreier graphs generated
by Borel actions of amenable groups, which are defined in the next section.
Such a version of the local lemma could be a useful tool for making progress
on the open problems discussed in the next section.

The theorems we have described above are a small selection of what is
now known about measurable chromatic numbers. We hope they give the
reader some sense of the variety of results and tools of the subject.

3. Connections with hyperfiniteness

A major research program in modern descriptive set theory has been
to understand the relative complexity of equivalence relations under Borel
reducibility. Precisely, if E and F are equivalence relations on standard Borel
spacesX and Y , say that E is Borel reducible to F if there is a Borel function
f : X → Y such that for all x, y ∈ X, we have x E y ⇐⇒ f(x) F f(y).
Such a function induces a definable injection from X/E to Y/F . If we think
of E and F as classification problems, this means E is simpler than F in
the sense that any invariants that can be used to classify F can also be used
to classify E. In the study of Borel reducibility of equivalence relations,
there has been success both in understanding the abstract structure of all
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Borel equivalence relations under Borel reducibility, and also in proving
particular non-classification results of interest to working mathematicians.
For example, Hjorth’s theory of turbulence [27] gives a precise dichotomy
for when an equivalence relation generated by a Polish group action can be
classified by invariants that are countable structures, and turbulence has
been applied to prove nonclassifiability results in C∗ algebras [19].

A Borel equivalence relation E is said to be countable if every E-class
is countable. The countable Borel equivalence relations are an important
and well-studied subclass of Borel equivalence relations with rich connec-
tions with operator algebras and ergodic theory. One reason for this is the
Feldman-Moore theorem [34, Theorem 1.3], which states that every count-
able Borel equivalence relation is induced by a Borel action of a countable
group. Results proved about the dynamics of measure preserving actions of
countable groups have played a played an important role in our understand-
ing of the theory of countable Borel equivalence relations.

Understanding how the descriptive-set-theoretic complexity of countable
Borel equivalence relations is related to the dynamics of the group actions
that generate them is a deep problem. An important simplicity notion for
Borel reducibility is hyperfiniteness: a Borel equivalence relation is hyperfi-
nite if it can be written as an increasing union of Borel equivalence relations
whose classes are all finite. The hyperfinite equivalence relations are the sim-
plest nontrivial class of Borel equivalence relations as made precise by the
Glimm-Effros dichotomy of Harrington, Kechris, and Louveau [26]. Weiss
has asked if the group-theoretic notion of amenability precisely corresponds
to hyperfiniteness:

Problem 3.1 (Weiss, [53]). Suppose E is a Borel equivalence relation gen-
erated by a Borel action of a countable amenable group. Is E hyperfinite?

Amenability was defined by von Neumann in reaction to the Banach-
Tarski paradox. It is a group-theoretic notion of dynamical tameness. Pre-
cisely, a group Γ is amenable if and only if for every ϵ > 0 and every finite
S ⊆ Γ there exists some nonempty finite F ⊆ Γ such that |SF△F |/|F | < ϵ.
Such an F is called an (ϵ, S)-Følner set. Examples of amenable groups
include finite, abelian, and solvable groups, while the free group on two
generators is nonamenable. If Weiss’s question has a positive answer, then
amenability precisely characterizes hyperfiniteness since every nonamenable
group has a non-hyperfinite Borel action. Evidence that Weiss’s question
has a positive answer is given by a theorem in ergodic theory of Ornstein
and Weiss [45] that every measure preserving action of an amenable group
on a standard probability space is hyperfinite modulo a nullset.

Progress on Weiss’s question has grown out of progress on the problem of
finding Borel tilings of group actions by Følner sets. Precisely, if a : Γ ↷ X
is an action of a finitely generated group Γ, and F1, . . . , Fn ⊆ Γ are finite
subsets of Γ, a tiling of a by the shapes F1, . . . , Fn is a collection of subsets
A1, . . . , An ⊆ X so that the sets F1 · A1, . . . , Fn · An are pairwise disjoint
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and form a partition of X. Finding tilings of a group action can be thought
of as a generalized coloring problem or constraint satisfaction problem of
the type often studied in measurable combinatorics, and can be approached
using many of the same tools. For example, Jackson, Kechris, and Louveau
[28] have shown that Weiss’s question has a positive answer for groups of
polynomial volume growth. Their argument uses Voronoi regions around
Borel maximal independent sets to make Borel tilings with desirable prop-
erties. Gao and Jackson [22] have shown that Weiss’s question has a positive
answer for abelian groups. Their argument centers around a more refined
inductive argument to find tilings of Zn by hyperrectangles. These tilings
are found by iteratively adjusting the location of the boundaries of hyper-
rectangular tiles that cover the space until their parallel boundaries are far
apart. Schneider and Seward have extended Gao and Jackson’s machinery
to all locally nilpotent groups [47]. All these tilings are the building blocks
out of which witnesses to hyperfiniteness are constructed.

A positive answer to the following open problem would be progress to-
wards a positive solution to Weiss’s question:

Problem 3.2. Let Γ be an amenable group with finite symmetric generating
set S and a : Γ ↷ X be a free Borel action of a on a standard Borel space
X. For every ϵ > 0 does there exists (ϵ, S)-Følner sets F1, . . . , Fn ⊆ Γ such
that the action a has a Borel tiling with shapes F1, . . . , Fn?

The existence of such tilings without any measurability conditions was
only recently established by Downarowicz, Huczek, and Zhang [15]. A key
step in their proof is to use Hall’s matching theorem to match untiled points
in a Ornstein-Weiss style quasitiling [45] to construct an exact tiling. Recall
that if G = (V,E) is a graph, a perfect matching of G is a subset M ⊆ E of
edges so that each vertex x ∈ V is incident to exactly one edge in M . Hall’s
matching theorem states that a bipartite graph with bipartition A,B ⊆ V
has a perfect matching if and only if for every finite set F ⊆ A or F ⊆ B,

|N(F )| ≥ |F |.
Recently, Problem 3.2 has been shown to have a positive answer modulo
a nullset [12]. A key part of the proof is a measurable matching result
proved using an idea of Lyons and Nazarov [38] that was originally used to
find factor of i.i.d. perfect matchings of regular trees. Lyons and Nazarov’s
argument uses the Hungarian matching algorithm (repeatedly flipping aug-
menting paths) to show that if a bipartite Borel graph G satisfies a certain
measure-theoretic expansion condition, strengthening Hall’s condition, then
it has a measurable perfect matching.

Conley, Jackson, Marks, Seward, and Tucker-Drob have proven the fol-
lowing:

Theorem 3.3 (Conley, Jackson, Marks, Seward, Tucker-Drob [14]). Let Γ
be a countable group admitting a normal series where each quotient of con-
secutive terms is a finite group or a torsion-free abelian group with finite
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Q-rank, except that the top quotient can be any group of uniform local poly-
nomial volume-growth or the lamplighter group Z2 ≀Z. Then every free Borel
action of Γ is hyperfinite.

By combining this with prior work of Seward and Schneider [47, Cor. 8.2]
they obtain the following corollary:

Corollary 3.4. Weiss’s question has a positive answer for polycyclic groups.

This is the best partial result on Weiss’s question that is currently known.
Significantly, Corollary 3.4 applies to groups of exponential volume growth
such as certain semidirect products of Zn. All the previous work on Weiss’s
question applied only to groups locally of polynomial volume growth, and
this seemed an inherent limitation to previous methods.

The central idea of [14] is to adapt the machinery of Gromov’s theory of
asymptotic dimension of groups to the setting of descriptive set theory, mak-
ing a theory of Borel asymptotic dimension. These ideas were implicitly hid-
den in all previous work on Weiss’s question, but were first made explicit in
[14]. Asymptotic dimension was introduced by Gromov as a quasi-isometry
invariant of metric spaces, used to study geometric group theory. The as-
ymptotic dimension of a metric space (X, ρ) is the least d such that for every
r > 0 there is a uniformly bounded cover U of X so that every closed r-ball
intersects at most d + 1 sets in U . Essentially, asymptotic dimension is a
“large-scale” analogue of Lebesgue covering dimension. There are actually
several different ways to define asymptotic dimension whose equivalences
are nontrivial to prove. Proving that these different definitions still define
the same notion in the Borel context is one of the keys to the work in [14].
Alternate definitions allow the conversion between Voronoi cell-type tilings
patterned on the work of Jackson, Kechris, and Louveau, and covers with
far apart facial boundaries pioneered by Gao and Jackson.

Resolving Weiss’s question for all amenable groups appears to be a dif-
ficult problem. In general, we have a poor understanding of the geometry
and structure of Følner sets in arbitrary amenable groups. Problem 3.1
for arbitrary amenable groups seems to either require significant advances
in our geometric understanding of amenable groups, or completely differ-
ent descriptive-set theoretic tools for attacking the hyperfiniteness problem.
One question which gets at the heart of this difficulty is the following:

Problem 3.5. Suppose G is a bounded degree Borel graph having uniformly
bounded polynomial growth. Is the connectedness relation of G hyperfinite?

The obstacle in resolving Problem 3.5 is that while polynomial growth
groups have tight both upper and lower bound on their growth, Problem 3.5
only posits an upper bound on the growth of G, which may consequently
have much less uniformity in its growth than the Schreier graph associated
to an action of a polynomial growth group. This lack of a lower bound on
growth means that the techniques of Jackson, Kechris, Louveau for proving
hyperfiniteness of groups of polynomial growth cannot resolve Problem 3.5
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Finding techniques for resolving Problem 3.5 where there is far less regular
geometric structure would be one way of making progress towards resolving
Weiss’s question in general since we know little about any regular geometric
structure in arbitrary amenable groups.

4. Measurable equidecompositions

If a : Γ ↷ X is an action of a group Γ on a space X, then we say sets
A,B ⊆ X are a-equidecomposable if there are a finite partition {A0, . . . , An}
of A and group elements γ0, . . . , γn ∈ Γ so that γ0A0, . . . , γnAn is a parti-
tion of B. For example, in this language, the Banach-Tarski paradox says
that one unit ball is equidecomposable with two unit balls under the group
action of isometries of R3. In the last few years several new results proved
about these types of geometrical paradoxes with the unifying theme that the
“paradoxical” sets in many classical geometrical paradoxes can surprisingly
be much nicer than one would naively expect.

A classical generalization of the Banach Tarski paradox states that any
two bounded sets A,B ⊆ R3 with nonempty interior are equidecomposable.
Of course, the pieces used in these equidecompositions must be nonmea-
surable in general, since A and B may have different measure. However, a
remarkable theorem of Grabowski, Máthé and Pikhurko states that there is
always an equidecomposition using measurable sets when A and B have the
same Lebesgue measure.

Theorem 4.1 (Grabowski, Máthé, Pikhurko [25]). If A,B ⊆ R3 are bounded
sets with nonempty interior and if additionally A and B are assumed to have
the same Lebesgue measure, then A and B can be equidecomposed using
Lebesgue measurable pieces.

It is an open problem whether Theorem 4.1 can be strengthened to yield
a Borel equidecomposition, assuming A and B are Borel.

Key to Theorem 4.1 and other advances in measurable equidecompositions
has been progress made on measurable matching problems. The connection
comes from the following graph-theoretic reformulation of equidecomposi-
tions as perfect matchings. Let a : Γ ↷ X be a Borel action of a group Γ
on a space X, let A,B,⊆ X be subsets of X, and let S ⊆ Γ be finite. Let
G(A,B, S) be the graph whose set of vertices is the disjoint union A⊔B and
where x ∈ A and Y ∈ B are adjacent if there is a γ ∈ S so that γ · x = y.
Then it is easy to see that A,B are equidecomposable using group elements
from S if and only if there is a perfect matching of the graph G(A,B, S).

Theorem 4.1 and other new results about measurable equidecompositions
rely on combining process made on measurable matching problems with
modern results about the dynamics of the group actions being studied. For
example, Theorem 4.1 uses the local spectral gap of Boutonnet, Ioana, and
Salehi Golsefidy [1] for certain lattices in the group SO3(R) of rotations in
R3. This result is used to check that the graph G(A,B, S) satisfies the
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expansion condition of Lyons and Nazarov [38] which ensures the existence
of a measurable matching.

Some other recent theorems about measurable equidecompositions con-
cern Tarski’s famous circle squaring problem from 1925: the question of
whether a disk and square of the same area in R2 are equidecomposable
by isometries. Tarski’s circle squaring problem arose from the fact that the
analogue of the Banach-Tarski paradox is false in R2. This is because there
are so-called Banach measures in R2: finitely additive isometry invariant
measures that extend Lebesgue measure. Their existence is proved using
the amenability of the isometry group of R2. Hence, if Lebesgue measurable
sets A,B ⊆ R2 are equidecomposable, they must have the same Lebesgue
measure. The real thrust of Tarski’s circle squaring problem is the con-
verse of this: the general problem of to what extent there is an equivalence
between equidecomposability and having the same measure.

In 1990, Laczkovich [36] gave a positive answer to Tarski’s circle squaring
problem using the Axiom of Choice. His proof involved sophisticated tools
from Diophantine approximation and discrepancy theory to prove strong
quantitative bounds on the ergodic theorem for translation actions of the
torus, as well as the graph-theoretic approach to equidecomposition de-
scribed above.

Marks and Unger have shown that there is a Borel solution to Tarski’s
circle squaring problem, building on an earlier result of Grabowski, Máthé,
and Pikhurko, [24] that the circle can be squared using Lebesgue measurable
pieces.

Theorem 4.2 (Marks, Unger [42]). Tarski’s circle squaring problem has
a positive solution using Borel pieces. More generally, for all n ≥ 1, if
A,B ⊆ Rn are bounded Borel sets with the same positive Lebesgue measure
whose boundaries have upper Minkowski dimension less than n, then A and
B are equidecomposable using Borel pieces.

Hence, for Borel sets whose boundaries aren’t wildly fractal, having the
same measure is actually equivalent to having an explicitly definable Borel
equidecomposition.

Theorem 4.2 uses new techniques for constructing Borel perfect match-
ings in Borel graphs based on first finding a real-valued Borel flow as an
intermediate step. Precisely, if f : V → R is a function on the vertices of a
graph G, then an f -flow on G is a real-valued function ϕ on the edges of G
such that ϕ(x, y) = −ϕ(y, x) for every directed edge (x, y) of G, and such
that for every x ∈ V the flow ϕ satisfies Kirchoff’s law:

f(x) =
∑

y∈N(x)

ϕ(x, y).

Given a circle and square A,B ⊆ [0, 1)2 of the same area, the first step in the
proof of Theorem 4.2 is finding an explicit (1A − 1B)-flow of an appropriate
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Borel graph whose vertices are all the elements of [0, 1)2 and whose edges
are generated by finitely many translations.

The advantage of working with the generality of flows is twofold. First,
a flow can be constructed in countably many steps, making the error in
Kirchoff’s law above continuously approach 0 whereas the error in a partial
matching that makes it non-perfect is discrete. Second, the average of f -
flows is an f -flow and so it is possible to integrate families of definable flows
to get another definable flow. Finally, there are well known combinatorial
equivalences between flows and matchings which are used in the last step
of the proof of Theorem 4.2 to “round” a real-valued flow into an integer
valued flow and then use it to construct a matching.

Another key ingredient in the proof of Theorem 4.2 is the hyperfiniteness
of Borel actions of abelian groups. In particular, the proof of Theorem 4.2
uses a recent refinement due to Gao, Jackson, Krohne, and Seward [23] of
Gao and Jackson’s [22] theorem that Borel actions of abelian groups are
hyperfinite. These witnesses to hyperfiniteness are used to ensure that the
Ford-Fulkerson algorithm converges when it is used to round the Borel real-
valued flow described above into a Borel integer-valued flow.

This flow approach to equidecomposition problems may be useful for at-
tacking other open questions such as the Borel Ruziewicz problem:

Problem 4.3 (Wagon [52]). Suppose n ≥ 2. Is Lebesgue measure the unique
finitely additive rotation invariant probability measure defined on the Borel
subsets of the n-sphere Sn?

This question is inspired by a theorem of Margulis [39] and Sullivan [49]
(n ≥ 4), and Drinfeld [16] (n = 2, 3), who proved that Lebesgue measure
is the unique finitely additive rotation invariant measure on the Lebesgue
measurable subsets of Sn. Wagon’s proposed strengthening would be the
stronger and more natural result since the Borel sets are the natural sets to
measure for any measure.
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